已知函數(shù)f(x)=
(Ⅰ)若k>0且函數(shù)在區(qū)間上存在極值,求實數(shù)k的取值范圍;
(Ⅱ)如果當(dāng)x≥2時,不等式恒成立,求實數(shù)a的取值范圍;
(Ⅲ)求證:n≥2,…[n(n+1)-2][(n+1)(n+2)-2]>e2n-3
【答案】分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的符號判斷函數(shù)的單調(diào)性,從而得到函數(shù)的極值為f(1),再由函數(shù)f(x)在區(qū)間(其中k>0)上存在極值可得,由此求得實數(shù)k的取值范圍.
(Ⅱ)由題意可得x≥2時,,根據(jù)導(dǎo)數(shù)的符號判斷函數(shù)的單調(diào)性,求出函數(shù) 最小值,從而得到實數(shù)a的取值范圍.
(Ⅲ)由(2)知:當(dāng)a=3時,恒成立,即,令 x=n(n+1)-2,則.可得 ,,…,,把這n個不等式相加化簡即得所證.
解答:解(Ⅰ)因為 函數(shù)f(x)=,x>0,則 f′(x)=-
當(dāng) 0<x<1時,>0;當(dāng) x>1時,f′(x)<0.
所以 f(x)在(0,1)上單調(diào)遞增;在(1,+∞)上單調(diào)遞減,
所以函數(shù)f(x)在 x=1處取得極大值;….(2分)
因為函數(shù)f(x)在區(qū)間(其中k>0)上存在極值,
所以解得;….(4分)
(Ⅱ)不等式,又x≥2,則,,則;….(6分)
令h(x)=x-2lnx,則,∵x≥2,h′(x)≥0,∴h(x)在[2,+∞)上單調(diào)遞增,∴h(x)min=h(2)=2-2ln2>0,
從而 g′(x)>0,故g(x)在[2,+∞)上也單調(diào)遞增,所以g(x)min=g(2)=2(1+ln2),
所以.a(chǎn)≤2(1+ln2);….(8分)
(Ⅲ)由(2)知:當(dāng)a=3時,恒成立,即,
令 x=n(n+1)-2,則;….(10分)
所以 ,,…,
,
n個不等式相加得>2n-3
即(2•3-2)(3•4-2)…(n(n+1)-2)((n+1)(n+2)-2)>e2n-3….(14分)
點評:本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)在某點取得極值的條件,函數(shù)的恒成立問題,不等式性質(zhì)的應(yīng)用,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案