已知橢圓的中心為坐標(biāo)原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線上.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.
【答案】分析:(1)把M的橫坐標(biāo)代入準(zhǔn)線方程得到一個關(guān)系式,然后由短半軸b和c表示出a,代入關(guān)系式得到關(guān)于c的方程,求出方程的解得到c的值,進(jìn)而得到a的值,由a和b的值寫出橢圓的標(biāo)準(zhǔn)方程即可;
(2)設(shè)出以O(shè)M為直徑的圓的方程,變?yōu)闃?biāo)準(zhǔn)方程后找出圓心坐標(biāo)和圓的半徑,由以O(shè)M為直徑的圓被直線3x-4y-5=0截得的弦長,過圓心作弦的垂線,根據(jù)垂徑定理得到垂足為中點,由弦的一半,半徑以及圓心到直線的距離即弦心距構(gòu)成直角三角形,利用點到直線的距離公式表示出圓心到3x-4y-5=0的距離d,根據(jù)勾股定理列出關(guān)于t的方程,求出方程的解即可得到t的值,即可確定出所求圓的方程;
(3)設(shè)出點N的坐標(biāo),表示出,,由,得到兩向量的數(shù)量積為0,利用平面向量的數(shù)量積的運算法則表示出一個關(guān)系式,又,同理根據(jù)平面向量的數(shù)量積的運算法則得到另一個關(guān)系式,把前面得到的關(guān)系式代入即可求出線段ON的長,從而得到線段ON的長為定值.
解答:解:(1)又由點M在準(zhǔn)線上,得
,∴c=1,從而
所以橢圓方程為;
(2)以O(shè)M為直徑的圓的方程為x(x-2)+y(y-t)=0

其圓心為,半徑
因為以O(shè)M為直徑的圓被直線3x-4y-5=0截得的弦長為2
所以圓心到直線3x-4y-5=0的距離=
所以,解得t=4
所求圓的方程為(x-1)2+(y-2)2=5
(3)設(shè)N(x,y),則,

,∴2(x-1)+ty=0,∴2x+ty=2,
又∵,∴x(x-2)+y(y-t)=0,
∴x2+y2=2x+ty=2,
所以為定值.
點評:此題綜合考查了橢圓的簡單性質(zhì),垂徑定理及平面向量的數(shù)量積的運算法則.要求學(xué)生掌握平面向量垂直時滿足的條件是兩向量的數(shù)量積為0,以及橢圓中長半軸的平方等于短半軸與半焦距的平方和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(3,-1)共線.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)M為橢圓上任意一點,且
OM
OA
OB
(λ,μ∈R)
,證明λ22為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點,斜率為1且過橢圓右焦點F(2,0)的直線交橢圓于A,B兩點,
OA
+
OB
a
=(3,-1)
共線,則該橢圓的長半軸長為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(3,-1)
共線,則該橢圓的離心率為( 。
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

同步練習(xí)冊答案