【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加元時,未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi).

1)當(dāng)每輛車的月租金定為元時,能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

【答案】180輛;(2)當(dāng)每輛車的月租金定為元時,租賃公司的月收益最大,最大月收益為307050.

【解析】

1)當(dāng)每輛車的月租金定為4000元時,未租出的車輛數(shù)為,從而可得到租出去的車輛數(shù);

2)設(shè)每輛車的月租金為x元,租賃公司的月收益函數(shù)為y=f(x),建立函數(shù)解析式,利用配方法求出最大值即可.

1)當(dāng)每輛車的月租金定為4000元時,未租出的車輛數(shù)為,10020=80,

所以這時租出了80輛車.

2)設(shè)每輛車的月租金定為元,則租賃公司的月收益為,

整理得

所以,當(dāng)時, 最大,最大值為,

即當(dāng)每輛車的月租金定為元時,租賃公司的月收益最大,最大月收益為307050.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為2的正三角形沿軸滾動,記滾動過程中頂點的橫、縱坐標(biāo)分別為,設(shè)的函數(shù),記,則下列說法中:

①函數(shù)的圖像關(guān)于軸對稱;

②函數(shù)的值域是;

③函數(shù)上是增函數(shù);

④函數(shù)上有個交點.

其中正確說法的序號是_______.

說明:“正三角形沿軸滾動”包括沿軸正方向和沿軸負(fù)方向滾動.沿軸正方向滾動指的是先以頂點B為中心順時針旋轉(zhuǎn),當(dāng)頂點C落在軸上時,再以頂點C為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正三角形可以沿軸負(fù)方向滾動.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)AO的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”,給出下列命題:
①對于任意一個圓O,其“優(yōu)美函數(shù)“有無數(shù)個”;
②函數(shù) 可以是某個圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)y=sinx可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對稱圖形.
其中正確的命題是( )

A.①③
B.①③④
C.②③
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線C:y2=2px的焦點為F,拋物線上一定點Q(1,2).

(1)求拋物線C的方程及準(zhǔn)線l的方程;
(2)過焦點F的直線(不經(jīng)過Q點)與拋物線交于A,B兩點,與準(zhǔn)線l交于點M,記QA,QB,QM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O(shè)點為極點,x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=4cos θ.
(1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)將曲線C上各點的橫坐標(biāo)縮短為原來的 ,再將所得曲線向左平移1個單位,得到曲線C1 , 求曲線C1上的點到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的極值;

(2)若函數(shù)有兩個零點,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( )單調(diào),則ω的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系:,且投入的肥料費(fèi)用不超過5百元.此外,還需要投入其他成本(如施肥的人工費(fèi)等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤為(單位:百元).

(1)求利潤函數(shù)的函數(shù)關(guān)系式,并寫出定義域;

(2)當(dāng)投入的肥料費(fèi)用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1已知fx+1=x2+4x+1,求fx的解析式.

2已知fx是一次函數(shù),且滿足3fx+1-fx=2x+9.求fx

3已知fx滿足2fx+f =3x,求fx

查看答案和解析>>

同步練習(xí)冊答案