拋物線y2=4x上一點M到焦點的距離為3,則點M的橫坐標x=________.
2
∵2p=4,∴p=2,準線方程x=-1.由拋物線定義可知,點M到準線的距離為3,則x+1=3,即x=2.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A,B,M為拋物線弧AB上的動點.

(1)若|AB|=8,求拋物線的方程;
(2)求的最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線的焦點的直線交拋物線于A,B兩點,點O是原點,若;則△AOB的面積為(   )
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

右圖是拋物線形拱橋,當水面在時,拱頂離水面2米,水面寬4米,水位下降1米后,水面寬        米.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,直線l1和l2相交于點M,l1⊥l2,點N∈l1,以A、B為端點的曲線段C上任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|NB|=6,建立適當?shù)淖鴺讼,求曲線段C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.

(1)求拋物線C的標準方程;
(2)求過點F,且與直線OA垂直的直線的方程;
(3)設過點M(m,0)(m>0)的直線交拋物線C于D、E兩點,ME=2DM,記D和E兩點間的距離為f(m),求f(m)關于m的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線y2=4x的焦點為F,過F的直線與該拋物線相交于A(x1,y1)、B(x2,y2)兩點,則+的最小值是(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線y=k(x+1)與拋物線C:y2=4x相交于A,B兩點,F為拋物線C的焦點,若|FA|=2|FB|,則k=(  )
A.±B.±
C.±D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,拋物線的焦點為F,斜率的直線過焦點F,與拋物線交于A、B兩點,若拋物線的準線與x軸交點為N,則(  )

A. 1  B.   C.    D.

查看答案和解析>>

同步練習冊答案