設(shè)a、b是兩個(gè)不共線的非零向量(t∈R),記
OA
=a,
OB
=tb,
OC
=
1
3
(a+b)
,那么當(dāng)實(shí)數(shù)t為何值時(shí),A、B、C三點(diǎn)共線?
分析:A、B、C三點(diǎn)共線時(shí),存在實(shí)數(shù)λ,使
OC
OA
+(1-λ)
OB
,解方程求實(shí)數(shù)t.
解答:解:由 A、B、C三點(diǎn)共線,可知存在實(shí)數(shù)λ,使
OC
OA
+(1-λ)
OB
,
1
3
(a+b)=λa+(1-λ)tb
,即
λ=
1
3
(1-λ)t = 
1
3
,則 λ=
1
3
,實(shí)數(shù)t=
1
2
點(diǎn)評(píng):本題考查三點(diǎn)共線的條件,A、B、C三點(diǎn)共線時(shí),存在實(shí)數(shù)λ,使
OC
OA
+(1-λ)
OB
,待定系數(shù)法求實(shí)數(shù)t.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(易線性表示)設(shè)
a
,
b
是兩個(gè)不共線的非零向量,若向量k
a
+2
b
與8
a
+k
b
的方向相反,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
,
b
是兩個(gè)不共線向量,
AB
=2
a
+p
b
,
BC
=
a
+
b
,
CD
=
a
-2
b
,若A、B、D三點(diǎn)共線,則實(shí)數(shù)P的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
、
b
是兩個(gè)不共線的非零向量 (t∈R)
(1)記
OA
=
a
,
OB
=t
b
,
OC
=
1
3
(
a
+
b
)
,那么當(dāng)實(shí)數(shù)t為何值時(shí),A、B、C三點(diǎn)共線?
(2)若|
a
|=|
b
|=1且
a
b
夾角為120°
,那么實(shí)數(shù)x為何值時(shí)|
a
-x
b
|
的值最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
b
是兩個(gè)不共線的向量,且向量
a
b
-(
b
-2
a
)
共線,則λ=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
b
是兩個(gè)不共線向量,且向量
a
+t
b
與(
b
-2
a
)共線,則t=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案