已知向量=(cos36°,sin36°),=(cos24°,sin(-24°)),則=   
【答案】分析:直接利用向量的數(shù)量積的坐標表示,然后結(jié)合兩角和的余弦公式進行化簡即可求解
解答:解:由題意可得,=cos36°cos24°+sin36°sin(-24°)
=cos36°cos24°-sin36°sin24°
=cos(36°+24°)=cos60
故答案為:
點評:本題主要考查了向量 的數(shù)量積的坐標表示及兩角和的余弦公式的簡單應用,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
.
a
=(cos
2
,sin
2
),
.
b
=(cos
θ
2
,-sin
θ
2
),θ∈[0,
π
3
],
(I)求
.
a
.
.
b
|
.
a
+
.
b
|
的最大值和最小值;
(II)若|k
.
a
+
.
b
|=
3
|
.
a
-k
.
b
|(k∈R),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cos
2
,sin
2
),
b
=(cos
θ
2
,-sin
θ
2
),θ∈[0,
π
3
]
,
(1)求
a
b
|
a
+
b
|
的最大值和最小值;
(2)若|k
a
+
b
|=
3
|
a
-k
b
|(k∈R)
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量
.
a
=(cos
2
,sin
2
),
.
b
=(cos
θ
2
,-sin
θ
2
),θ∈[0,
π
3
],
(I)求
.
a
.
.
b
|
.
a
+
.
b
|
的最大值和最小值;
(II)若|k
.
a
+
.
b
|=
3
|
.
a
-k
.
b
|(k∈R),求k的取值范圍.

查看答案和解析>>

同步練習冊答案