已知向量,

(1)若求向量的夾角;

(2)當時,求函數(shù)的最大值.

答案:
解析:

  解:(1)當x時,

  cos=-cosx=-cos=cos

  ∵0≤π,∴  6分

  (2)f(x)=2a·b+1=2(-cos2x+sinxcosx)+1=2sinxcosx-(2cos2x-1)

 。絪in2x-cos2xsin(2x)  9分

  ∵x[],∴2x∈[,2π],

  故sin(2x)∈[-1,],

  ∴當2x,即x時,f(x)取得最大值,且f(x)max=1  12分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
2
,1),
b
=(
3
2
,
3
4
)
,設
a
b
的夾角為θ,則cosθ=
4
3
7
4
3
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
,1)
,
b
=(0,1)
,
c
=(k,
3
)
,若
a
+2
b
c
垂直,則k=
-3
-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(x,1),
b
=(2,1),
c
=(1,y),若
a
⊥(
b
-
c
)
,則y-x等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,1),
b
=(1,k)
a
b
的夾角為銳角,則k的取值范圍是 ( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•海淀區(qū)一模)已知向量
a
=(x+1,2),
b
=(-1,x).若
a
b
垂直,則|
b
|=( 。

查看答案和解析>>

同步練習冊答案