函數(shù)f(x)=2x-的定義域為(0,1](a為實數(shù)),
(1)當a=-1時,求函數(shù)y=f(x)的值域;
(2)若函數(shù)y=f(x)在定義域上是減函數(shù),求a的取值范圍;
(3)求函數(shù)y=f(x)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時x的值.
解:(1)顯然函數(shù)y=f(x)的值域為;
(2)若函數(shù)y=f(x)在定義域上是減函數(shù),
則任取x1,x2∈(0,1]且x1<x2都有f(x1)>f(x2)成立,

只要a<-2x1x2即可,由x1,x2∈(0,1],
故-2x1x2∈(-2,0),所以a≤-2,
故a的取值范圍是(-∞,-2]。
(3)當a≥0時,函數(shù)y=f(x)在(0,1]上單調(diào)減,無最小值,
當x=1時取得最大值2-a;
由(2)得當a≤-2時,函數(shù)y=f(x)在(0,1]上單調(diào)減,無最大值,
當x=1時取得最小值2-a;
當-2<a<0時,函數(shù)y=f(x)在上單調(diào)減,在上單調(diào)增,無最大值,
時,取得最小值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-a
2x+1
是奇函數(shù),
(1)求a的值;
(2)求函數(shù)f(x)的值域;
(3)解不等式f(x)<
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
+alnx-2(a>0)

(Ⅰ)若曲線y=f(x)在點P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于?x∈(0,+∞)都有f(x)>2(a-1)成立,試求a的取值范圍;
(Ⅲ)記g(x)=f(x)+x-b(b∈R).當a=1時,函數(shù)g(x)在區(qū)間[e-1,e]上有兩個零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x        ,x≤
1
2
|log2x| ,x>
1
2
,g(x)=x+b,若函數(shù)y=f(x)+g(x)有兩個不同的零點,則實數(shù)b的取值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
2x-1a+2x+1
是奇函數(shù).
(1)求a的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若對任意的t∈R,不等式f(mt2+1)+f(1-mt)>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x-
1
x
的零點所在的區(qū)間是(  )

查看答案和解析>>

同步練習(xí)冊答案