已知{an}是等差數(shù)列,且公差d≠0,又a1,a2,a4依次成等比數(shù)列,則數(shù)學(xué)公式=________.


分析:由等差數(shù)列的項a1,a2,a4依次成等比數(shù)列,得到首項和公差的關(guān)系,代入要求的式子即可求得結(jié)果.
解答:由{an}是等差數(shù)列,所以,a2=a1+d,a4=a1+3d,
又a1,a2,a4依次成等比數(shù)列,所以,,
,所以,,因為d≠0,所以,a1=d.
=
故答案為
點評:本題考查了等差數(shù)列和等比數(shù)列的通項公式,考查了學(xué)生的計算能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù){an}的前n項和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知滿足:
(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案