圓(x+1)2+y2=4上的動點p到直線x+y-7=0的距離的最小值等于( 。
分析:求出圓心到直線x+y-7=0的距離d,由d-r即可求出P到直線距離的最小值.
解答:解:由圓方程得:圓心(-1,0),半徑r=2,
∵圓心到直線x+y-7=0的距離d=
|-1+0-7|
2
=4
2

∴動點P到直線x+y-7=0的距離的最小值等于d-r=4
2
-2.
故選A.
點評:此題考查了直線與圓的位置關(guān)系,點到直線的距離公式,圓的標(biāo)準(zhǔn)方程,根據(jù)題意得出動點P到直線x+y-7=0的距離的最小值為d-r是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點C為圓(x+1)2+y2=8的圓心,點A(1,0),P是圓上的動點,點Q在圓的半徑CP上,且
MQ
AP
=0,
AP
=2
AM

(1)當(dāng)點P在圓上運動時,求點Q的軌跡方程;
(2)設(shè)過點(0,2)且斜率為2的直線l與(1)中所求的曲線交于B,D兩點,O為坐標(biāo)原點,求△BDO的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(3,1)作一直線與圓(x-1)2+y2=9相交于M、N兩點,則|MN|的最小值為( 。
A、2
5
B、2
C、4
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點p是圓(x+1)2+y2=16上的動點,圓心為B.A(1,0)是圓內(nèi)的定點;PA的中垂線交BP于點Q.
(1)求點Q的軌跡C的方程;
(2)若直線l交軌跡C于M,N(MN與x軸、y軸都不平行)兩點,G為MN的中點,求KMN•KOG的值(O為坐標(biāo)系原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是圓(x-1)2+y2=4上任意一點,過P作PQ⊥x軸,Q為垂足,求線段PQ的中點M的軌跡方程,并畫出圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C與圓(x-1)2+y2=1關(guān)于直線y=-x對稱,則圓C的方程為
x2+(y+1)2=1
x2+(y+1)2=1

查看答案和解析>>

同步練習(xí)冊答案