18.已知二項式${({x+\frac{1}{x}})^n}$的展開式中各項的系數(shù)和為256.
(Ⅰ)求n;
(Ⅱ)求展開式中的常數(shù)項.(結(jié)果用數(shù)字作答)

分析 (Ⅰ)再令x=1,由條件求得n=8,
(Ⅱ)先求出二項式展開式的通項公式,再令x的冪指數(shù)等于0,求得r的值,即可求得展開式中的常數(shù)項

解答 解:(Ⅰ),由題意可得 2n=256,∴n=8,
(Ⅱ)${({x+\frac{1}{x}})^n}$的展開式的通項為Tr+1=C8rx8-2r,令8-2r=0,解得r=4,
∴C84=70

點評 本題主要考查二項式定理的應用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,求展開式中某項的系數(shù),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.下列4個命題:
(1)若xy=1,則x,y互為倒數(shù)的逆命題;
(2)面積相等的三角形全等的否命題;
(3)若m≤1,則x2-2x+m=0有實數(shù)解的逆否命題;
(4)若xy=0,則x=0或y=0的否定.
其中真命題(1)(2)(3)(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.給出下列結(jié)論:
(1)函數(shù)f(x)=tanx有無數(shù)個零點;
(2)集合A={x|y=2x+1},集合 B={x|y=x2+x+1}則A∩B={(0,1),(1,3)};
(3)函數(shù)$f(x)=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|$的值域是[-1,1];
(4)函數(shù)$f(x)=2sin(2x+\frac{π}{3})$的圖象的一個對稱中心為$(\frac{π}{3},0)$;
(5)已知函數(shù)f(x)=2cosx,若存在實數(shù)x1,x2,使得對任意的實數(shù)x都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值為2π.
其中結(jié)論正確的序號是(1)(4)(把你認為結(jié)論正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設$\overrightarrow{a}$,$\overrightarrow$,是任意的非零平面向量,且相互不共線,則下列正確的是( 。
A.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|>|$\overrightarrow$|,且$\overrightarrow{a}$,$\overrightarrow$同向,則$\overrightarrow{a}$>$\overrightarrow$
B.|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|
C.|$\overrightarrow{a}$•$\overrightarrow$|≥|$\overrightarrow{a}$||$\overrightarrow$|
D.|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|-|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.三棱錐S-ABC的頂點都在同一球面上,且SA=AC=SB=BC=2$\sqrt{2}$,SC=4,則該球的體積為$\frac{32}{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2為橢圓的左.右焦點,M是橢圓上任一點,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$的取值范圍為[-3,3],則橢圓方程為(  )
A.$\frac{x^2}{9}+\frac{y^2}{3}=1$B.$\frac{x^2}{6}+\frac{y^2}{3}=1$C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$+y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.點(1,2)和(-1,m)關于kx-y+3=0對稱,則m+k=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.函數(shù)f(x)=ex(2x-1)-ax+a(a∈R),e為自然對數(shù)的底數(shù).
(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在實數(shù)x∈(1,+∞),滿足f(x)<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若直線ax+2y-2=0與直線x+(a+1)y+1=0垂直,則a=$-\frac{2}{3}$.

查看答案和解析>>

同步練習冊答案