已知函數(shù)f(x)=x3+3ax2+3ax+1.
(Ⅰ)若一條直線與曲線y=f(x)相切于點(1,3),求這條直線的方程;
(Ⅱ)若該函數(shù)在x=2處取到極值,試判斷方程f(x)=0的實根的個數(shù).
分析:(I)欲求出切線方程,只須求出其斜率即可,故先利用導數(shù)求出在x=1處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(II)首先求出函數(shù)的導數(shù),根據(jù)函數(shù)在x=2處取到極值求得a值,然后根據(jù)導數(shù)與單調(diào)區(qū)間的關系確定函數(shù)的單調(diào)區(qū)間,分析可知y=f(x)圖象的大致形狀及走向,可知函數(shù)圖象的變化情況,可知方程f(x)=0有3個不同實根.
解答:解:(Ⅰ)將點(1,3)代入f(x)=x3+3ax2+3ax+1,得a=
1
6
.…(2分)
于是f(x)=x3+
1
2
x2+
1
2
x+1.
∴f′(x)=3x2+x+
1
2

由題意知該直線的斜率為k=f′(1)=
9
2
.…(4分)
∴所求直線方程為y-3=
9
2
(x-1),即9x-2y-3=0.…(6分)
(Ⅱ) f′(x)=3x2+6ax+3a.
由f′(2)=0,得a=-
4
5
.…(8分)
此時f′(x)=3x2-
24
5
x-
12
5

由f′(x)=3x2-
24
5
x-
12
5
>0,解得x<-
2
5
或x>2.
∴f(x)最大f(-
2
5
)>0,f(x)最小=f(2)<0.
所以曲線y=f(x)與x軸有3個交點.,即方程f(x)=0有3個實根.…(12分)
點評:本小題主要考查直線的斜率、導數(shù)的幾何意義、利用導數(shù)研究曲線上某點切線方程、利用導數(shù)研究函數(shù)的單調(diào)性等基礎知識,體現(xiàn)了數(shù)形結合的思想方法,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案