設(shè)a=log210,b=log315,c=log735,則( 。
A、c>a>b
B、b>c>a
C、b>a>c
D、a>b>c
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由對(duì)數(shù)的運(yùn)算性質(zhì)可得a=log210>3,2<b<3,c=log735<2,從而得到a、b、c的大小關(guān)系.
解答: 解:由對(duì)數(shù)的性質(zhì)可得a=log210>log28=3,log39=2<b=log315<log327,
c=log735<log749=2,
∴a>b>c,
故選:D.
點(diǎn)評(píng):本題主要考查對(duì)數(shù)的運(yùn)算性質(zhì)、對(duì)數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
1-x
的定義域?yàn)镸,則∁RM=(  )
A、(-∞,1)
B、(1,+∞)
C、(-∞,1]
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下命題:
①一個(gè)簡諧運(yùn)動(dòng)的函數(shù)表達(dá)式為f(x)=sin(
1
2
x+
4
)
,則這個(gè)簡諧運(yùn)動(dòng)的函數(shù)的最小正周期為4π;
②已知函數(shù)f(x)=loga(x-
87
2
)+89,(a>0且a≠1)
恒過定點(diǎn)(m,n),則m,n使等式m=sin21°+sin22°+sin23°+…+sin2n°成立;
③對(duì)于函數(shù)f(x)=x2+ax+b和g(x)=logax(0<a<1),有f(
x1+x2
2
)≤f(x1)+f(x2)
g(
x1+x2
2
)≥g(x1)+g(x2)
成立;
④定義:若任意x∈A,總有a-x∈A,(A≠∅),就稱集合A為a的閉集.已知集合A⊆{1,2,3,4,5,6},且A為6的閉集,則這樣的集合A共有7個(gè);
其中所有正確敘述的命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[120,130),[130,140),[l40,150]三組內(nèi)的學(xué)生中,用分層抽樣的方法選取30人參加一項(xiàng)活動(dòng),則從身高在[120,130)的學(xué)生中選取的人數(shù)應(yīng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若F1、F2是雙曲線
x2
4
-
y2
5
=1的兩個(gè)焦點(diǎn),點(diǎn)P是該雙曲線上一點(diǎn),滿足|PF1|+|PF2|=9,則|PF1|•|PF2|=( 。
A、4
B、5
C、
65
4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是橢圓的左,右焦點(diǎn),現(xiàn)以F2為圓心作一個(gè)圓恰好經(jīng)過橢圓中心并且交橢圓于點(diǎn)M,N,若過F1的直線MF1是圓F2的切線,則橢圓的離心率為( 。
A、
3
-1
B、2-
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos
π
9
•cos
9
•cos(-
23π
9
)=( 。
A、-
1
8
B、-
1
16
C、
1
16
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在對(duì)某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲、乙兩地出產(chǎn)的該產(chǎn)品中各隨機(jī)抽取10件,測(cè)量該產(chǎn)品中某種元素的含量(單位:毫克).如圖是測(cè)量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量≥15毫克時(shí)為優(yōu)質(zhì)品.
(Ⅰ)試用上述樣本數(shù)據(jù)估計(jì)甲、乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
(Ⅱ)從乙地抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,F(xiàn)1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn),A、B為兩個(gè)頂點(diǎn),已知橢圓C上的點(diǎn)(1,
3
2
)到F1、F2兩點(diǎn)的距離之和為4.
(1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)過橢圓C的焦點(diǎn)F2作AB的平行線交橢圓于P、Q兩點(diǎn),求弦長|PQ|.

查看答案和解析>>

同步練習(xí)冊(cè)答案