選做題(請考生從以下三個小題中任選一個作答,若多選,則按所選的第一題計分.)
A(坐標(biāo)系與參數(shù)方程選講選做題)直線l:(t為參數(shù))被曲線C:(θ為參數(shù))所截得的弦長為   
B(不等式選講選做題)若存在實數(shù)x滿足|x-3|+|x-m|<5,則實數(shù)m的取值范圍為   
C(幾何證明選講選做題)若一直角三角形的內(nèi)切圓與外接圓的面積分別π與9π,則該三角形的面積為   
【答案】分析:A 把直線l的參數(shù)方程化為直角坐標(biāo)方程為 3x-4y-8=0,曲線C的參數(shù)方程化為直角坐標(biāo)方程為(x-5)2+(y-3)2=4,表示以(5,3)為圓心,以2為半徑的圓,求出圓心到直線的距離,再利用弦長公式求出弦長.
B|x-3|+|x-m|表示數(shù)軸上的x對應(yīng)點到3和m對應(yīng)點的距離之和,其最小值為|m-3|,由|m-3|<5,解得實數(shù)m的取值范圍.
C 設(shè)R,r分別為Rt△ABC的外接圓半徑和內(nèi)切圓半徑,則由直角三角形的內(nèi)切圓與外接圓的面積分別π與9π可得 r=1,R=3.設(shè)兩直角邊分別為a,b,則由圓的切線性質(zhì)可得斜邊為
a-r+b-r==2R=6,解得 a+b=8,根據(jù)三角形的面積等于   求得結(jié)果.
解答:解:A  直線l:(t為參數(shù))即 ,即 3x-4y-8=0.
曲線C:(θ為參數(shù))化為直角坐標(biāo)方程為(x-5)2+(y-3)2=4,表示以(5,3)為圓心,以2為半徑的圓.
圓心到直線的距離等于 =1,由弦長公式求得弦長為2=2,
故答案為 2
B  由于存在實數(shù)x滿足|x-3|+|x-m|<5,而|x-3|+|x-m|表示數(shù)軸上的x對應(yīng)點到3和m對應(yīng)點的距離之和,其最小值為|m-3|,
故|m-3|<5,解得-2<m<8,
故答案為-2<m<8.
C  設(shè)R,r分別為Rt△ABC的外接圓半徑和內(nèi)切圓半徑,則由直角三角形的內(nèi)切圓與外接圓的面積分別π與9π可得 πr2=π,πR2=9π,
解得 r=1,R=3.
設(shè)兩直角邊分別為a,b,則由圓的切線性質(zhì)可得斜邊為 a-r+b-r==2R=6,∴a+b=8.
故三角形的面積等于 ==7,
故答案為 7.
點評:本題考查了把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點到直線的距離公式的應(yīng)用.解絕對值不等式,絕對值的意義.三角形的內(nèi)切圓和內(nèi)心,以及外心的定義和求法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選做題(請考生從以下三個小題中任選一個作答,若多選,則按所選的第一題計分.)
A(坐標(biāo)系與參數(shù)方程選講選做題)直線l:
x=4t
y=3t-2
(t為參數(shù))被曲線C:
x=5+2cosθ
y=3+2sinθ
(θ為參數(shù))所截得的弦長為
2
3
2
3

B(不等式選講選做題)若存在實數(shù)x滿足|x-3|+|x-m|<5,則實數(shù)m的取值范圍為
-2<m<8
-2<m<8

C(幾何證明選講選做題)若一直角三角形的內(nèi)切圓與外接圓的面積分別π與9π,則該三角形的面積為
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

選做題(請考生從以下三個小題中任選一個作答,若多選,則按所選的第一題計分.)
A(坐標(biāo)系與參數(shù)方程選講選做題)直線l:數(shù)學(xué)公式(t為參數(shù))被曲線C:數(shù)學(xué)公式(θ為參數(shù))所截得的弦長為________.
B(不等式選講選做題)若存在實數(shù)x滿足|x-3|+|x-m|<5,則實數(shù)m的取值范圍為________.
C(幾何證明選講選做題)若一直角三角形的內(nèi)切圓與外接圓的面積分別π與9π,則該三角形的面積為________.

查看答案和解析>>

同步練習(xí)冊答案