在數(shù)列{2n-1}的前2011項(xiàng)中任意選取若干項(xiàng)相乘(當(dāng)只取到一項(xiàng)時(shí),乘積就為所選項(xiàng)本身),記所有這樣的乘積和為S,則log2(S+1)的值為( 。
A、1005×2011B、1006×2011C、2010×2011D、2011×2011
分析:根據(jù)假設(shè)數(shù)列{2n-1}的前m項(xiàng)中任意選取若干項(xiàng)相乘,所有這樣的乘積和為Sm,根據(jù)所給的條件列出sm+1的表示式,取對(duì)數(shù)得到結(jié)果.
解答:解:假設(shè)數(shù)列{2n-1}的前m項(xiàng)中任意選取若干項(xiàng)相乘,所有這樣的乘積和為Sm
則S(m+1)=Sm+(2 m+1-1)Sm+2 m+1-1
∴Sm+1+1=2m+1 (Sm+1)
S1=1
S 1+1=2
Sm+1=21 22…2m=2
m(m+1)
2

S+1=S2011+1=2
2011×2012
2

log 2(S+1)=
2011×2012
2
=1006×2011
故選B.
點(diǎn)評(píng):本題考查數(shù)列與函數(shù)的綜合,本題解題的關(guān)鍵是正確理解題目中所給的條件,寫(xiě)出要求的對(duì)數(shù)的真數(shù)表示式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•惠州模擬)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)任意的n∈N+,都有Sn=(m+1)-man(m為正常數(shù)).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)數(shù)列{bn}滿足b1=2a1,bn=
bn-1
1+bn-1
,(n≥2,n∈N*),求數(shù)列{bn}的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列{
2n+1
bn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an} 中,a1=1,an+1=1-
1
4an
,bn=
2
2an-1
,其中n∈N+
(Ⅰ)求證:數(shù)列{bn} 是等差數(shù)列,并求數(shù)列{an} 的通項(xiàng)公式an
(Ⅱ)設(shè)cn=
2
n+1
an,數(shù)列{CnCn+1} 的前n項(xiàng)和為T(mén)n,是否存在正整整m,使得Tn<
2
m
對(duì)于n∈N+恒成立,若存在,求出m的最大值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省重點(diǎn)中學(xué)協(xié)作體高三第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

在數(shù)列{2n-1}的前2011項(xiàng)中任意選取若干項(xiàng)相乘(當(dāng)只取到一項(xiàng)時(shí),乘積就為所選項(xiàng)本身),記所有這樣的乘積和為S,則log2(S+1)的值為( )
A.1005×2011
B.1006×2011
C.2010×2011
D.2011×2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省高考數(shù)學(xué)仿真押題卷10(理科)(解析版) 題型:選擇題

在數(shù)列{2n-1}的前2011項(xiàng)中任意選取若干項(xiàng)相乘(當(dāng)只取到一項(xiàng)時(shí),乘積就為所選項(xiàng)本身),記所有這樣的乘積和為S,則log2(S+1)的值為( )
A.1005×2011
B.1006×2011
C.2010×2011
D.2011×2011

查看答案和解析>>

同步練習(xí)冊(cè)答案