(22)
(Ⅰ)給出兩塊相同的正三角形紙片(如圖1,圖2),要求用其中一塊剪拼成一個正三棱錐模型,另一塊剪拼成一個正三棱柱模型,使它們的全面積都與原三角形的面積相等,請設(shè)計一種剪拼方法,分別用虛線標示在圖1、圖2中,并作簡要說明;
(Ⅱ)試比較你剪拼的正三棱錐與正三棱柱的體積的大;
(Ⅲ)如果給出的是一塊任意三角形的紙片(如圖3),要求剪拼成一個直三棱柱模型,使它的全面積與給出的三角形的面積相等,請設(shè)計一種剪拼方法,用虛線標示在圖3中,并作簡要說明.
(22)本小題主要考查空間想象能力、動手操作能力、探究能力和靈活運用所學(xué)知識解決現(xiàn)實問題的能力.
解:
(Ⅰ)如圖1,沿正三角形三邊中點連線折起,可拼得一個正三棱錐.
如圖2,正三角形三個角上剪出三個相同的四邊形,其較長的一組鄰邊邊長為三角形邊長的,有一組對角為直角.余下部分按虛線折起,可成為一個缺上底的正三棱柱,而剪出的三個相同的四邊形恰好拼成這個正三棱柱的上底.
(Ⅱ)依上面剪拼的方法,有V柱>V錐.
推理如下:
設(shè)給出正三角形紙片的邊長為2,那么,正三棱錐與正三棱柱的底面都是邊長為1的正三角形,其面積為.現(xiàn)在計算它們的高:
h錐==,
h柱=tan30°=.
∴V錐-V柱=(h錐-h柱)·
=(-)·=<0,
∴V柱>V錐.
(Ⅲ)如圖3,分別連結(jié)三角形的內(nèi)心與各頂點,得到三條線段,再以這三條線段的中點為頂點作三角形.以新作的三角形為直三棱柱的底面,過新三角形的三個頂點向原三角形三邊作垂線,沿六條垂線剪下三個四邊形,可以拼接成直三棱柱的上底,余下部分按虛線折起,成為一個缺上底的直三棱柱,即可得到直三棱柱模型.
注:考生如有其他的剪拼方法,可比照本標準評分.
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
an+an+2 |
2 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
6 |
2 |
sin2x |
2 |
1 |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
|
|
log
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com