曲線f(x)=ln x-在x=1處的切線方程為( )
A.x+y-1-=0
B.x+y+1+=0
C.x-y-1+=0
D.x+y-1+=0
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)f(x)=x2+2a|x|+4a2-3的零點(diǎn)有且只有一個(gè),則實(shí)數(shù)a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
有一種樹木栽植5年后可成材,在栽植的5年內(nèi),每年增長20%,如果不砍伐,從第6年起到第10年,每年增長10%.現(xiàn)有兩種砍伐方案:
甲方案:栽植5年后不砍伐,等到10年后砍伐.
乙方案:栽植5年后砍伐一次,經(jīng)過5年再砍伐一次.
請計(jì)算后回答:10年后哪一個(gè)方案可以得到較多的木材?(不考慮其他成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=x3-ax2+10.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若在區(qū)間[1,2]內(nèi)至少存在一個(gè)實(shí)數(shù)x,使得f(x)<0成立,求實(shí)數(shù)a的取值范圍.
難點(diǎn)突破
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知定義在R上的函數(shù)f(x),其導(dǎo)函數(shù)f′(x)的大致圖像如圖K141所示,則下列敘述正確的是( )
圖K141
A.f(b)>f(c)>f(d) B.f(b)>f(a)>f(e)
C.f(c)>f(b)>f(a) D.f(c)>f(e)>f(d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)=xln x,g(x)=-x2+ax-3.若對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com