精英家教網 > 高中數學 > 題目詳情

如圖,點分別是橢圓C:的左、右焦點,過點軸的垂線,交橢圓的上半部分于點,過點的垂線交直線于點.

(1)如果點的坐標為(4,4),求橢圓的方程;
(2)試判斷直線與橢圓的公共點個數,并證明你的結論.

(1);(2)1個.

解析試題分析:(1)要求橢圓方程,由于,需要通過已知條件表示出點的坐標,由于軸,則,代入橢圓方程求得點的縱坐標,從而求得直線的斜率,根據求的直線的斜率,有直線方程的點斜式求出直線的方程,直線的方程與聯立求得點的坐標,從而求得,由于橢圓中可求出,即可求得橢圓的方程;(2)要判斷直線與橢圓的公共點個數,需要求出直線的方程,與橢圓方程聯立,消去得到關于得一元二次方程,通過判斷這個方程的的根的情況,即可得出所求的交點的個數.
試題解析:解方程組點的坐標為,
 ,,直線的方程為
代入上式解得,.               4分
(1)因為點的坐標為(4,4),所以,解得,
橢圓的方程為.                           7分
(2),則 點的坐標為,
,
的方程為,即,        9分
的方程代入橢圓的方程得,
    ①
,
方程①可化為
解得,
所以直線與橢圓只有一個公共點                    13分
考點:橢圓的性質,直線與橢圓的位置關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,過點的兩直線與拋物線相切于A、B兩點, AD、BC垂直于直線,垂足分別為D、C.

(1)若,求矩形ABCD面積;
(2)若,求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.(1)求橢圓C的標準方程;(2)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ)求拋物線的方程;
(Ⅱ)當點為直線上的定點時,求直線的方程;
(Ⅲ)當點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓的左、右焦點分別是、,下頂點為,線段的中點為為坐標原點),如圖.若拋物線軸的交點為,且經過、兩點.

(Ⅰ)求橢圓的方程;
(Ⅱ)設,為拋物線上的一動點,過點作拋物線的切線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設拋物線的焦點為,準線為,,以為圓心的圓相切于點,的縱坐標為,是圓軸除外的另一個交點.
(I)求拋物線與圓的方程;
(II)過且斜率為的直線交于兩點,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C的中心在原點,焦點F在軸上,離心率,點在橢圓C上.
(1)求橢圓的標準方程;
(2)若斜率為的直線交橢圓、兩點,且、、成等差數列,點M(1,1),求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

查看答案和解析>>

同步練習冊答案