已知兩條不重合的直線m,n和兩個(gè)不重合的平面α,β,有下列命題:
①若m⊥n,m⊥α,則n∥α;②若m⊥α,n⊥β,m∥n,則α∥β;③若m,n是兩條異面直線,m?α,n?β,m∥β,n∥α,則α∥β;④若α⊥β,α∩β=m,n?β,n⊥m,則n⊥α;其中正確命題的個(gè)數(shù)是( ).
A.1 B.2 C.3 D.4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練倒數(shù)第3天練習(xí)卷(解析版) 題型:選擇題
在等差數(shù)列{an}中,若a1+a5+a9=,則tan (a4+a6)=( ).
A. B. C.1 D.-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練3-x5練習(xí)卷(解析版) 題型:選擇題
在等差數(shù)列{an}中,給出以下結(jié)論:
①恒有:a2+a8≠a10;
②數(shù)列{an}的前n項(xiàng)和公式不可能是Sn=n;
③若m,n,l,k∈N*,則“m+n=l+k”是“am+an=al+ak”成立的充要條件;
④若a1=12,S6=S11,則必有a9=0,其中正確的是( ).
A.①②③ B.②③ C.②④ D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練3-x4練習(xí)卷(解析版) 題型:選擇題
若a,b∈R,且ab>0,則下列不等式中,恒成立的是( ).
A.a+b≥2 B.≥
C.≥2 D.a2+b2>2ab
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練3-x1練習(xí)卷(解析版) 題型:填空題
如圖,在△ABC中,AB=AC=2,BC=2 ,點(diǎn)D在BC邊上,∠ADC=75°,則AD的長為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練3-x1練習(xí)卷(解析版) 題型:選擇題
閱讀如圖的程序框圖,若運(yùn)行相應(yīng)的程序,則輸出的S的值是( ).
A.102 B.39 C.81 D.21
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練3-d4練習(xí)卷(解析版) 題型:解答題
如圖,在四棱錐P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,異面直線PA和CD所成角等于60°.
(1)求證:面PCD⊥面PBD;
(2)求直線PC和平面PAD所成角的正弦值的大小;
(3)在棱PA上是否存在一點(diǎn)E,使得二面角A-BE-D的余弦值為?若存在,指出點(diǎn)E在棱PA上的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練2-1練習(xí)卷(解析版) 題型:解答題
已知m=,n=,f(x)=m·n,且f=.
(1)求A的值;
(2)設(shè)α,β∈,f(3α+π)=,f=-,求cos (α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-8練習(xí)卷(解析版) 題型:選擇題
一個(gè)棱長為2的正方體沿其棱的中點(diǎn)截去部分后所得幾何體的三視圖如圖所示,則該幾何體的體積為( ).
A.7 B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com