(12分)在中,角所對的邊分別為,且滿足

(I)求角的大小;

(II)求的最大值,并求取得最大值時角的大小.

 

 

【答案】

解:(I)由正弦定理得

因為所以

(II)由(I)知

于是:

 

取最大值2.

 

綜上所述,的最大值為2,此時

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

中,角所對的邊分別為,且滿足,. 

(Ⅰ)求的面積;               (Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆廣東東莞南開實驗學校高二上期中文數(shù)學卷(解析版) 題型:填空題

中,角所對的邊分別為,若,,,則       

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年貴州省第五校高三第五次聯(lián)考理科數(shù)學(暨遵義四中13次月考) 題型:解答題

中,角所對的邊分別為.向量,

.已知,

(Ⅰ)求的大;

(Ⅱ)判斷的形狀并證明.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試(重慶卷)數(shù)學理工類模擬試卷(一) 題型:解答題

中,角所對的邊分別為,且滿足,.  

(Ⅰ)求的面積; 

(Ⅱ)若,求的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年遼寧省瓦房店市高一下學期期末聯(lián)考文科數(shù)學 題型:解答題

(本小題滿分12分)

中,角所對的邊分別為,滿足,且的面積為

(1)求的值;

(2)若,求的值.

 

 

查看答案和解析>>

同步練習冊答案