如圖1-2(3)-14,它是曲柄連桿裝置示意圖,連桿AC=l,曲柄AB=r,曲柄AB和曲軸BC的角為α.

(1)求連桿AC和曲軸BC間的夾角β的正弦.

(2)當α取什么值時,β最大?

(3)求滑塊C的位移x.

答案:
解析:

思路分析:由α、β、l、r構(gòu)成的△ABC中,求β的正弦可讓我們想到正弦定理,根據(jù)正弦函數(shù)的有界性,進而由sinβ的最值利用正弦函數(shù)的單調(diào)性求出β的最值.

解:(1)在△ABC中,由正弦定理,知sinβ=sinα.

(2)由(1)知sinβ= sinα,當sinα=1時,sinβ最大.

∵0≤β≤,∴當sinβ最大時,β最大,即sinα=1時,α=,此時β最大.

(3)在△ABC中,由余弦定理BC2=AB2+AC2-2AB\\5AC\\5cos∠BAC,

∴BC2=r2+l2-2rlcos(π-α-β)=r2+l2+2rlcos(α+β).

∴BC=.

∴位移x=r+l-BC=.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)現(xiàn)有一個破損的圓塊(如圖1),只給出一把帶有刻度的直尺和一個量角器,請你設(shè)計一種方案,求出這個圓塊的直徑的長度.
(2)如圖2,已知△ABC三個角,A,B,C滿足sin2B+sin2C-sin2A=sinB•sinC,AD是△ABC外接圓直徑,CD=2,BD=3,求∠CAB和AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

班主任為了對本班學生的考試成績進行分析,決定從全班25名女同學,15名男同學中隨機抽取一個容量為8的樣本進行分析.若這8位同學的數(shù)學、物理分數(shù)對應(yīng)如下表:
學生編號 1 2 3 4 5 6 7 8
數(shù)學分數(shù)x 60 65 70 75 80 85 90 95
物理分數(shù)y 72 77 80 84 88 90 93 95
根據(jù)如表數(shù)據(jù)用變量y與x的相關(guān)關(guān)系
(1)畫出樣本的散點圖,并說明物理成績y與數(shù)學成績x之間是正相關(guān)還是負相關(guān)?
(2)求y與x的線性回歸直線方程(系數(shù)精確到0.01),并指出某個學生數(shù)學83分,物理約為多少分?
參考公式:回歸直線的方程是:
?
y
=bx+a
,
其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
;其中
?
y
i
是與xi對應(yīng)的回歸估計值.
參考數(shù)據(jù):
.
x
=77.5,
.
y
=85,
8
i=1
(x1-
.
x
)2≈1050
,
8
i=1
(x1-
.
x
)(y1-
.
y
)≈688

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x),定義域為(-
3
2
,3),其圖象如圖所示,記y=f(x)的導函數(shù)為y=f′(x),則不等式f′(x)≤0的解集為
[-
1
3
,1]∪[2,3)
[-
1
3
,1]∪[2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1-2-10,已知△ABC中,D、E分別為AB、AC上的點,DE∥BC,DE=1,BC=3,AB=6,則AD的長為 (    )

1-2-10

A.1             B.1.5                  C.2               D.2.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1-2-13所示,l1∥l2∥l3,若CH=4.5 cm,AG=3 cm,BG=5 cm,EF=12.9 cm,則DH=,EK=_________.

            

                         圖1-2-13                 

查看答案和解析>>

同步練習冊答案