已知正數(shù)x、y滿足
2x-y≤0
x-3y+5≥0
,則z=22x+y的最大值為( 。
分析:本題考查的知識點(diǎn)是簡單線性規(guī)劃的應(yīng)用,我們要先畫出滿足約束條件
2x-y≤0
x-3y+5≥0
的平面區(qū)域,然后分析平面區(qū)域里各個(gè)角點(diǎn),然后將其代入2x+y中,即可求出z=22x+y的最大值.
解答:解:滿足約束條件
2x-y≤0
x-3y+5≥0
的平面區(qū)域如下圖所示:
2x-y=0
x-3y+5=0
得A(1,2),
由圖可知:當(dāng)x=1,y=2時(shí)z=22x+y的最大值為24=16,
故選B.
點(diǎn)評:在解決線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y滿足(1+x)(1+2y)=2,則4xy+
1xy
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y滿足
x-y+2≥0
4x-y-1≤0
則z=4x•2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知正數(shù)x、y滿足2x+y=1,求
1
x
+
1
y
的最小值及對應(yīng)的x、y值.
(2)已知x>-2,求函數(shù)y=x+
16
x+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y滿足x+2y=3,當(dāng)xy取得最大值時(shí),過點(diǎn)P(x,y)引圓(x-
1
2
)2+(y+
1
4
)2=
1
2
的切線,則此切線段的長度為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知正數(shù)x、y滿足2x+y=1,求
1
x
+
1
y
的最小值及對應(yīng)的x、y值.
(2)已知x、y為正實(shí)數(shù),且2x+y+6=xy,求x+y的最小值.

查看答案和解析>>

同步練習(xí)冊答案