設(shè)函數(shù)f(x)=
3
cos(ωx-?)-sin(ωx-?),(ω>0,|ω|<π)
是偶函數(shù),且在[0,
3
]
上遞增,則ω的最大值為( 。
分析:利用函數(shù)是偶函數(shù),求出φD的值,根據(jù)函數(shù)在[0,
3
]
上遞增,可得函數(shù)解析式,從而可求ω的最大值.
解答:解:∵函數(shù)f(x)=
3
cos(ωx-?)-sin(ωx-?),(ω>0,|ω|<π)
是偶函數(shù),
3
cos(-ωx-φ)-sin(-ωx-φ)
=
3
cos(ωx-φ)-sin(ωx-φ)
,
∴2
3
sinωxsinφ=2sinωxcosφ,
∴tanφ=
3
3

∴φ=
π
6
+kπ(k∈Z),
∴f(x)=
3
cos(ωx-φ)-sin(ωx-φ)
=2cosωx或-2cosωx,
∵函數(shù)在[0,
3
]
上遞增,
∴f(x)=-2cosωx,
π
ω
3
,
∴ω≤
3
2
,
∴ω的最大值為
3
2

故選C.
點(diǎn)評(píng):本題考查三角函數(shù)的性質(zhì),考查三角函數(shù)的化簡(jiǎn),確定函數(shù)解析式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x
,x≥0
-x
,x<0
,若f(a)+f(-1)=2,則a=(  )
A、-3B、±3C、-1D、±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
2-x,x∈(-∞,1]
log81x,x∈(1,+∞)
則滿f(x)=
1
4
的x的值(  )
A、只有2B、只有3
C、2或3D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=asinx-bcosx在x=
π
3
處有最小值-2,則常數(shù)a,b的值分別為
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
2
cos(ωx+φ)
,對(duì)任意x∈R都有f(
π
3
-x)
=f(
π
3
+x)
,若函數(shù)g(x)=3sin(ωx+φ)-2,則g(
π
3
)
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+?)(ω>0,0<?<
π
2
)
.若將f(x)的圖象沿x軸向右平移
1
6
個(gè)單位長(zhǎng)度,得到的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn);若將f(x)的圖象上所有的點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
2
倍(縱坐標(biāo)不變),得到的圖象經(jīng)過(guò)點(diǎn)(
1
6
,1)
,則( 。
A、ω=π,?=
π
6
B、ω=2π,?=
π
3
C、ω=
4
,?=
π
8
D、適合條件的ω,?不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案