已知向量
m
=(3cosx,
3
sinx),
n
=(2cosx,-2cosx),函數(shù)f(x)=
m
n

(1)求f(x)的最小正周期和對(duì)稱軸方程;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(B)=0且b=2,cosA=
4
5
,求a的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,正弦定理
專題:三角函數(shù)的圖像與性質(zhì),解三角形,平面向量及應(yīng)用
分析:(1)運(yùn)用向量的數(shù)量積的坐標(biāo)表示,結(jié)合二倍角公式和兩角和的余弦公式,化簡(jiǎn)f(x),再由周期公式和對(duì)稱軸方程,計(jì)算即可得到;
(2)運(yùn)用條件的平方關(guān)系,結(jié)合三角形的正弦定理,計(jì)算即可得到.
解答: 解:(1)由于向量
m
=(3cosx,
3
sinx),
n
=(2cosx,-2cosx),
則函數(shù)f(x)=
m
n
=6cos2x-2
3
sinxcosx=3(1+cos2x)-
3
sin2x
=3+2
3
3
2
cos2x-
1
2
sin2x)=3+2
3
cos(2x+
π
6
),
則f(x)的最小正周期為T=
2
=π,
由2x+
π
6
=2kπ(k∈Z),可得對(duì)稱軸方程x=kπ-
π
12
(k∈Z);
(2)f(B)=0即cos(2B+
π
6
)=-
3
2
,
由于B為銳角,則
π
6
<2B+
π
6
6
,
即有2B+
π
6
=
6
,解得B=
π
3

cosA=
4
5
,A為銳角,則sinA=
3
5
,
在△ABC中,由正弦定理可得
a=
bsinA
sinB
=
3
5
3
2
=
4
3
5
點(diǎn)評(píng):本題考查平面向量的數(shù)量積的坐標(biāo)表示,主要考查三角函數(shù)的恒等變換和余弦函數(shù)的周期,以及正弦定理的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1,中,AC=BC=
1
2
AA1=2,D是棱AA1的中點(diǎn),DC1⊥BD.
(1)證明:DC1⊥BC;
(2)求二面角C-BC1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐曲線
x=
5
cosθ
y=2sinθ
(θ為參數(shù))和定點(diǎn)A(0,2),F(xiàn)1、F2是圓錐曲線的左右焦點(diǎn),求經(jīng)過點(diǎn)F1垂直于直線AF2的直線L的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px的準(zhǔn)線與雙曲線
x2
a2
-
y2
3a2
=1(a>0)的兩條漸近線分別交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),△MON的面積為
3
,點(diǎn)P(x,y)為拋物線C上的動(dòng)點(diǎn),又點(diǎn)A(-1,0),F(xiàn)為拋物線的焦點(diǎn),則
|PF|
|PA|
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校為測(cè)評(píng)班級(jí)學(xué)生對(duì)任課教師的滿意度,采用“100分制”打分的方式來計(jì)分.現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,以下莖葉圖記錄了他們對(duì)某教師的滿意度分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):
規(guī)定若滿意度不低于98分,測(cè)評(píng)價(jià)該教師為“優(yōu)秀”.
(I)求從這10人中隨機(jī)選取3人,至多有1人評(píng)價(jià)該教師是“優(yōu)秀”的概率;
(Ⅱ)以這10人的樣本數(shù)據(jù)來估計(jì)整個(gè)班級(jí)的總體數(shù)據(jù),若從該班任選3人,
記ξ表示抽到評(píng)價(jià)該教師為“優(yōu)秀”的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
、
b
是夾角為60°的兩個(gè)單位向量,向量
a
b
(λ∈R)與向量
a
-2
b
垂直,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知凼數(shù)f(x)=x2-ax+2
(1)若f(x)>0解集為(-∞,1)∪(2,+∞),求a 的值;
(2)當(dāng)x>0時(shí),求
f(x)
x
 的最小值;
(3)若f (x)>1,解集為R,求實(shí)數(shù)a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=5
3
cos2x+
3
sin2x-4sinxcosx
(1)求f(
12

(2)若f(α)=5
3
,α∈(
π
2
,π),求角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(a)=
1
0
[2a2-(lna)x3]dx(a>0),求f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案