已知不等式(x+y)(+)≥9對任意正實數(shù)x,y恒成立,則正實數(shù)a的最小值為( )
A.2
B.4
C.6
D.8
【答案】分析:求(x+y)()的最小值;展開湊定值
解答:解:已知不等式(x+y)()≥9對任意正實數(shù)x,y恒成立,
只要求(x+y )()的最小值≥9

≥9
≥2或≤-4(舍去),
所以正實數(shù)a的最小值為4,
故選項為B.
點評:求使不等式恒成立的參數(shù)范圍,常轉(zhuǎn)化成求函數(shù)最值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
|x-y|≤1
|x+y|≤a
表示的平面區(qū)域的面積是8,則a的值是(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式(x+y)(
1
x
+
a
y
)≥9對任意正實數(shù)x,y恒成立,則正實數(shù)a的最小值為( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•東城區(qū)二模)已知不等式組
x+y≤1
x-y≥-1
y≥0
表示的平面區(qū)域M,若直線y=kx-3k與平面區(qū)域M有公共點,則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a.b為實數(shù),已知不等式組
x+y≥0
x+y≤6
2x-y≥0
y≥ax-b
表示的平面區(qū)域是一個菱形,則a+b=
2+3
10
2+3
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
|x+y|≤1
|x-y|≤a
表示的平面區(qū)域的面積是4,則a的值是( 。

查看答案和解析>>

同步練習(xí)冊答案