如圖,已知三棱錐OABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,EOC的中點(diǎn).

(1)求異面直線BEAC所成角的余弦值;

(2)求二面角ABEC的余弦值.

 

【答案】

(1)

(2)

【解析】(1)以O為原點(diǎn),OB,OC,OA分別為xy,z

建立空間直角坐標(biāo)系.

則有A(0,0,2),B(3,0,0),C(0,4,0),E(0,2,0).

 

所以,cos<>.      ……………………3分

由于異面直線BE與AC所成的角是銳角,

所以,異面直線BEAC所成角的余弦值是.  ……………………4分

(2),,

設(shè)平面ABE的法向量為,

則由,得,

,……………………6分

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052023442262505058/SYS201205202346334687701910_DA.files/image014.png">

所以平面BEC的一個(gè)法向量為n2=(0,0,1),

所以. ……………………8分

由于二面角ABEC的平面角是n1n2的夾角的補(bǔ)角,

所以,二面角ABEC的余弦值是.……………………10分

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求O點(diǎn)到面ABC的距離;
(2)求異面直線BE與AC所成的角;
(3)求二面角E-AB-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=2,OB=2,OC=4,E是OC的中點(diǎn),求二面角E-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱錐O-ABC中,
OA
=
a
,
OB
=
b
OC
=
c
,G點(diǎn)為△OBC的重心,則
AG
=( 。
A、
1
3
a
-
b
+
1
3
c
B、-
a
+
1
3
b
+
1
3
c
C、
1
3
a
+
1
3
b
-
c
D、-
a
+
2
3
b
+
2
3
c

查看答案和解析>>

同步練習(xí)冊(cè)答案