7.函數(shù)f(x)=$\sqrt{-2+lo{g}_{2}x}$的定義域是(  )
A.(0,4)B.(4,+∞)C.[4,+∞)D.(-4,4)

分析 由根式內(nèi)部的對數(shù)式大于等于0求解對數(shù)不等式得答案.

解答 解:由-2+log2x≥0,得log2x≥2=log24,∴x≥4,
∴函數(shù)f(x)=$\sqrt{-2+lo{g}_{2}x}$的定義域是[4,+∞).
故選:C.

點(diǎn)評 本題考查函數(shù)的定義域及其求法,考查了對數(shù)不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓C:(x-a)2+(y-a)2=2a2(a>0)及其外一點(diǎn)A(0,2).若圓C上存在點(diǎn)T滿足∠CAT=$\frac{π}{4}$,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1)B.$[\sqrt{3}-1,1)$C.$[\sqrt{3}-1,1]$D.$[\sqrt{3}-1,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.平行四邊形ABCD中,AB=4,AD=2,$\overrightarrow{AB}$•$\overrightarrow{AD}=4$,點(diǎn)P在邊CD上,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.計(jì)算($\frac{27}{8}$)${\;}^{\frac{2}{3}}}$=$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x-$\frac{1}{x}$,
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明:f(x)在(0,+∞)上為單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)集合A={x|ax2+bx+1=0}(a∈R,b∈R),集合B={-1,1}.
(Ⅰ)若B⊆A,求實(shí)數(shù)a的值;
(Ⅱ)若A∩B≠∅,求a2-b2+2a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x|,x≤m}\\{{x}^{2}-2mx+4m,x>m}\end{array}\right.$,其中m>0,若存在實(shí)數(shù)b,使得關(guān)于x的方程f(x)=b,有三個(gè)不同的根,則m的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.($\frac{1}{3}$,1)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}滿足:a5=9,a1+a7=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an+3n,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.對于函數(shù)f(x)定義域內(nèi)的任意x1,x2(x1≠x2),有以下結(jié)論:
①f(0)=1;
②f(1)=0
③f(x1+x2)=f(x1)•f(x2
④f(x1•x2)=f(x1)+f(x2
⑤f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$
⑥f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$
當(dāng)f(x)=2x時(shí),則上述結(jié)論中成立的是①③⑤(填入你認(rèn)為正確的所有結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案