【題目】在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,并解答.
已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項(xiàng)和,且, ,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
【答案】(1);(2)
【解析】
方案一:(1)根據(jù)等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式列方程組,求出和,從而寫(xiě)出數(shù)列的通項(xiàng)公式;
(2)由第(1)題的結(jié)論,寫(xiě)出數(shù)列的通項(xiàng),采用分組求和、等比求和公式以及裂項(xiàng)相消法,求出數(shù)列的前項(xiàng)和.
其余兩個(gè)方案與方案一的解法相近似.
解:方案一:
(1)∵數(shù)列都是等差數(shù)列,且,
,解得
,
綜上
(2)由(1)得:
方案二:
(1)∵數(shù)列都是等差數(shù)列,且,
解得
,
.
綜上,
(2)同方案一
方案三:
(1)∵數(shù)列都是等差數(shù)列,且.
,解得,
,
.
綜上,
(2)同方案一
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市環(huán)保部門(mén)對(duì)該市市民進(jìn)行了一次垃圾分類(lèi)知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參與問(wèn)卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若規(guī)定問(wèn)卷得分不低于70分的市民稱(chēng)為“環(huán)保關(guān)注者”,請(qǐng)完成答題卡中的列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?
(2)若問(wèn)卷得分不低于80分的人稱(chēng)為“環(huán)保達(dá)人”.視頻率為概率.
①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;
②為了鼓勵(lì)市民關(guān)注環(huán)保,針對(duì)此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動(dòng);其他參與的市民獲得一次抽獎(jiǎng)活動(dòng).每次抽獎(jiǎng)獲得紅包的金額和對(duì)應(yīng)的概率.如下表:
紅包金額(單位:元) | 10 | 20 |
概率 |
現(xiàn)某市民要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一幅招貼畫(huà)的示意圖,其中ABCD是邊長(zhǎng)為的正方形,周?chē)撬膫(gè)全等的弓形.已知O為正方形的中心,G為AD的中點(diǎn),點(diǎn)P在直線OG上,弧AD是以P為圓心、PA為半徑的圓的一部分,OG的延長(zhǎng)線交弧AD于點(diǎn)H.設(shè)弧AD的長(zhǎng)為,.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)定義比值為招貼畫(huà)的優(yōu)美系數(shù),當(dāng)優(yōu)美系數(shù)最大時(shí),招貼畫(huà)最優(yōu)美.證明:當(dāng)角滿足:時(shí),招貼畫(huà)最優(yōu)美.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.若散點(diǎn)圖中的樣本點(diǎn)散布在從左下角到右上角的區(qū)域,則散點(diǎn)圖中的兩個(gè)變量的相關(guān)關(guān)系為負(fù)相關(guān)
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)來(lái)刻畫(huà)回歸效果,的值越小,說(shuō)明模型的擬合效果越好
D.線性相關(guān)系數(shù)越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春季,某出租汽車(chē)公司決定更換一批新的小汽車(chē)以代替原來(lái)報(bào)廢的出租車(chē),現(xiàn)有兩款車(chē)型,根據(jù)以往這兩種出租車(chē)車(chē)型的數(shù)據(jù),得到兩款出租車(chē)車(chē)型使用壽命頻數(shù)表如下:
使用壽命年數(shù) | 5年 | 6年 | 7年 | 8年 | 總計(jì) |
型出租車(chē)(輛) | 10 | 20 | 45 | 25 | 100 |
型出租車(chē)(輛) | 15 | 35 | 40 | 10 | 100 |
(1)填寫(xiě)下表,并判斷是否有的把握認(rèn)為出租車(chē)的使用壽命年數(shù)與汽車(chē)車(chē)型有關(guān)?
使用壽命不高于年 | 使用壽命不低于年 | 總計(jì) | |
型 | |||
型 | |||
總計(jì) |
(2)司機(jī)師傅小李準(zhǔn)備在一輛開(kāi)了年的型車(chē)和一輛開(kāi)了年的型車(chē)中選擇,為了盡最大可能實(shí)現(xiàn)年內(nèi)(含年)不換車(chē),試通過(guò)計(jì)算說(shuō)明,他應(yīng)如何選擇.
附:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱ABC — A1B1C1中,AB=AC,BB1=BC,點(diǎn)P,Q,R分別是棱BC,CC1,B1C1的中點(diǎn).
(1)求證:A1R//平面APQ;
(2)求證:直線B1C⊥平面APQ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)坐標(biāo)為
(1)求拋物線方程;
(2)過(guò)直線上一點(diǎn)作拋物線的切線切點(diǎn)為A,B
①設(shè)直線PA、AB、PB的斜率分別為,求證:成等差數(shù)列;
②若以切點(diǎn)B為圓心r為半徑的圓與拋物線C交于D,E兩點(diǎn)且D,E關(guān)于直線AB對(duì)稱(chēng),求點(diǎn)P橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B. 若p:,,則:,
C. “若,則”的否命題是“若,則”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·全國(guó)卷Ⅲ文,18)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)估計(jì)六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出Y的所有可能值,并估計(jì)Y大于零的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com