如圖所示,在△ABC中,AB=AC,任意延長(zhǎng)CA到P,再延長(zhǎng)AB到Q,使AP=BQ,
求證:△ABC的外心O與點(diǎn)A、P、Q四點(diǎn)共圓.
【答案】分析:先作△ABC的外接圓⊙O,并作OE⊥AB于E,OF⊥AC于F,連接OP、OQ、OB、OA,證出BE=AF,OE=OF,再證Rt△OPF≌Rt△OQE,得到∠P=∠Q即可得到答案.
解答:證明:作△ABC的外接圓⊙O,并作OE⊥AB于E,OF⊥AC于F,
連接OP、OQ、OB、OA,
∵O是△ABC的外心,
∴OE=OF,OB=OA,
由勾股定理得:BE2=OB2-OE2,AF2=OA2-OF2,
∴BE=AF,
∵AP=BQ,
∴PF=QE,
∵OE⊥AB,OF⊥AC
∴∠OFP=∠OEQ=90°,
∴Rt△OPF≌Rt△OQE,
∴∠P=∠Q,
∴O、A、P、Q四點(diǎn)共圓.
即:△ABC的外心O與點(diǎn)A、P、Q四點(diǎn)共圓.
點(diǎn)評(píng):本題主要考查了四點(diǎn)共圓,勾股定理,全等三角形的性質(zhì)和判定,確定圓的條件等知識(shí)點(diǎn),作輔助線構(gòu)造全等三角形證
∠P=∠Q是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC,已知AB=
4
6
3
,cosB=
6
6
,AC邊上的中線BD=
5
,求:
(1)BC的長(zhǎng)度;
(2)sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,點(diǎn)D是邊AB的中點(diǎn),則向量
DC
=( 。
A、
1
2
BA
+
BC
B、
1
2
BA
-
BC
C、-
1
2
BA
-
BC
D、-
1
2
BA
+
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點(diǎn)M,則BM<1的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠BAC=90°,∠ABC=60°,AD⊥BC于D,則
AD
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點(diǎn)M,求BM<1的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案