已知,是雙曲線的左,右焦點,若雙曲線左支上存在一點與點關(guān)于直線對稱,則該雙曲線的離心率為
A.B.C.D.

試題分析:即雙曲線的一條漸近線方程.過焦點且垂直漸近線的直線方程為:,與聯(lián)立,解之可得
故對稱中心的點坐標為();
由中點坐標公式可得對稱點的坐標為,將其代入雙曲線的方程可得
結(jié)合
化簡可得,故.故選.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點P 為橢圓上一點,直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過橢圓上一點P作橢圓的切線交直線于點A,試判斷線段AP為直徑的圓是否恒過定點,若是,求出定點坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線)的焦距為,右頂點為,拋物線的焦點為,若雙曲線截拋物線的準線所得線段長為,且,則雙曲線的漸近線方程為___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)如圖,分別過橢圓左右焦點的動直線相交于點,與橢圓分別交于不同四點,直線的斜率、、滿足.已知當軸重合時,,
(1)求橢圓的方程;
(2)是否存在定點,使得為定值.若存在,求出點坐標并求出此定值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)雙曲線-=1(a>0,b>0)的右焦點為F,過點F作與x軸垂直的直線l交兩漸近線于A,B兩點,且與雙曲線在第一象限的交點為P,設(shè)O為坐標原點,若(λ,μ∈R),λμ=,則該雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(2013•浙江)已知拋物線C的頂點為O(0,0),焦點F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過F作直線交拋物線于A、B兩點.若直線OA、OB分別交直線l:y=x﹣2于M、N兩點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線C:y2=4x的焦點為F,直線y=2x-4與C交于A,B兩點,則cos∠AFB等于(  )
A.B.C.-D.-

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線C:=1,若存在過右焦點F的直線與雙曲線C相交于A,B 兩點且=3,則雙曲線離心率的最小值為( 。
A.B.C.2D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1、B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標準方程;
(2)過B1作直線交橢圓于P、Q兩點,使PB2⊥QB2,求△PB2Q的面積.

查看答案和解析>>

同步練習冊答案