(1+2x)2(1-x)5=a0+a1x+a2x2+…+a7x7,則a1-a2+a3-a4+a5-a6+a7等于      
[     ]
A.32    
B.-32  
C.-33    
D.-31
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、函數(shù)f(x)=(2x2-2×2x+2的定義域?yàn)镸,值域?yàn)閇1,2],給出下列結(jié)論:
①M(fèi)=[1,2]; ②0∈M;③1∈M;④M?[-2,1];⑤M⊆(-∞,1]; ⑥.M=(-∞,1]
其中一定成立的結(jié)論的序號(hào)是
②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

26、設(shè)(1+2x)2(1-x)5=a0+a1x+a2x2+…+a7x7,則a1-a2+a3-a4+a5-a6+a7=
-31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1+3x)(1+2x)2(1+x)3展開(kāi)式中,合并同類項(xiàng)后,x3的系數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+1)滿足0<f(1-2x)-f(x)<1.
(1)求x的取值范圍;
(2)若g(x)是偶函數(shù)且滿足g(x+2)=g(x),當(dāng)0≤x≤1時(shí),有g(shù)(x)=f(x),求g(x) 在x∈[1,2]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知問(wèn)題“設(shè)正數(shù)x,y滿足
1
x
+
2
y
=1
,求x+y的最值”有如下解法;
設(shè)
1
x
=cos2α,
2
y
=sin2α,α∈(0,
π
2
)
,
則x=sec2α=1+tan2α,y=2csc2α=2(1+cot2α),
所以,x+y=3+tan2α+2cot2α=3+tan2+
2
tan2α
≥3+2
2
,等號(hào)成立當(dāng)且僅當(dāng)tan2α=
2
tan2α
,即tan2α=
2
,此時(shí)x=1+
2
,y=2+
2

(1)參考上述解法,求函數(shù)y=
1-x
+2
x
的最大值.
(2)求函數(shù)y=2
x+1
-
x
(x≥0)
的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案