已知圓C的極坐標方程為ρ=2cosθ,直線l的極坐標方程為θ=
π
3
,則圓心到直線l的距離等于
 
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:把極坐標方程分別化為直角坐標方程,再利用點到直線的距離公式即可得出.
解答: 解:由圓C的極坐標方程為ρ=2cosθ,可得ρ2=2ρcosθ,化為x2+y2=2x,∴(x-1)2+y2=1,可得圓心C(1,0).
直線l的極坐標方程為θ=
π
3
,可得直角坐標方程:y=
3
x

∴圓心到直線l的距離d=
3
(
3
)2+12
=
3
2

故答案為:
3
2
點評:本題考查了把極坐標方程分別化為直角坐標方程、點到直線的距離公式,考查了計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知AF⊥平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(1)求證:AF∥平面BCE;
(2)求證:AC⊥平面BCE;
(3)求三棱錐E-BCF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)當x∈[-2,2]時,求函數(shù)y=f(x-1)+f(x+1)的最小值及取最小值時相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和Sn=
1
2
n2-2n(n∈N*),數(shù)列{bn}滿足bn=
an+1
an

(1)求數(shù)列{an}的通項公式;
(2)計算了b1,b2,b3,并猜想數(shù)列{bn}中的最大項和最小項(不需要證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(x2+1)(x-2)8=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,則a1+a2+…+a9的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,1,-3),
b
=(-1,2,3),
c
(7,6,λ),若
a
,
b
,
c
三向量共面,則λ=( 。
A、9B、-9C、-3D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四面體S-ABC的所有棱長都相等,它的俯視圖如圖所示,是一個邊長為
2
的正方形;則四面體S-ABC外接球的表面積為( 。
A、6πB、4πC、8πD、3π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班對喜愛打籃球是否與性別有關進行了調查,以本班的50人為對象進行了問卷調查得到了如下的列聯(lián)表:
喜愛打籃球不喜愛打籃球合  計
男生5
女生10
合計50
已知在全部50人中隨機抽取1人,抽到喜愛打籃球的學生的概率為
3
5

(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)是否有99.9%的把握認為喜愛打籃球與性別有關?說明你的理由;
(Ⅲ)已知不喜愛打籃球的5位男生中,A1,A2,A3喜歡踢足球,B1,B2喜歡打乒乓球,現(xiàn)再從喜歡踢足球、喜歡打乒乓球的男生中各選出1名同學進行其他方面的調查,求A1和B1至少有一個被選中的概率.
附:
P(K2≥k)0.050.010.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開式中所有奇次項系數(shù)的和為
 

查看答案和解析>>

同步練習冊答案