若函數(shù)f(x)是R上的減函數(shù),則下列各式成立的是( 。
分析:由a和2a,a2和a無法確定大小關(guān)系,結(jié)合函數(shù)的單調(diào)性判斷出A、B錯誤;由a2+2-2a平方后判斷出a2+2>2a,
結(jié)合函數(shù)的單調(diào)性判斷出C正確;與判斷C一樣的方法判斷出D錯誤.
解答:解:因為a和2a,a2和a無法確定大小關(guān)系,所以不能確定相應(yīng)函數(shù)值的大小關(guān)系,故A、B錯誤;
因為a2+2-2a=(a-1)2+1>0,所以a2+2>2a,
又因函數(shù)f(x)是R上的減函數(shù),所以f(a2+2)<f(2a),故C正確;
因為a2+1-a=(a-
1
2
)
2
+
3
4
>0,所以a2+1>a,
又因函數(shù)f(x)是R上的減函數(shù),所以f(a2+1)<f(a),故D錯誤.
故選C.
點評:本題查了函數(shù)的單調(diào)性和二次函數(shù)的性質(zhì)的應(yīng)用,以及作差法、和配方法比較自變量的大。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
mx3
3
+ax2+(1-b2)x
,m,a,b∈R.
(Ⅰ)求函數(shù)f(x)的導(dǎo)函數(shù)f′(x);
(Ⅱ)當(dāng)m=1時,若函數(shù)f(x)是R上的增函數(shù),求z=a+b的最小值;
(Ⅲ)當(dāng)a=1,b=
2
時,函數(shù)f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+a-3
ax+a
(a>0且a≠1).
(Ⅰ)若函數(shù)f(x)是R上的奇函數(shù),求實數(shù)a的值;
(Ⅱ)當(dāng)1≤x≤2時,請回答以下問題:
     (i)判斷函數(shù)f(x)的單調(diào)性(不必證明);
     (ii)若函數(shù)f(x)的最大值為
3
4
,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+3x,a∈R
(1)若x=3是f(x)的極值點,求f(x)的極值;
(2)若函數(shù)f(x)是R上的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(4x+1)-ax.若函數(shù)f(x)是R上的偶函數(shù),求:實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù),給出下列命題:
①若函數(shù)f(x)是R上周期為3的偶函數(shù),且滿足f(1)=1,則f(2)-f(-4)=0;
②若函數(shù)f(x)滿足f(x+1)f(x)=2 013,則f(x)是周期函數(shù);
③若函數(shù)g(x)=
x-1,x>0
f(x),x<0
是偶函數(shù),則f(x)=x+1;
④函數(shù)y=
log
1
3
|2x-3|
的定義域為(
3
2
,+∞).
其中正確的命題是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案