已知數(shù)列{xn}滿足,且T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n
(Ⅰ)求xn的表達(dá)式;
(Ⅱ)求T2n;
(Ⅲ)若,試比較9T2n與Qn的大小,并說明理由
【答案】分析:(I)由∵,可用累加法求解;
(Ⅱ)由xn求得an從而得到T2n,觀察其結(jié)構(gòu)是一個等差數(shù)列與等比數(shù)列積的形式,可用錯位相減法求解.(Ⅲ)由(Ⅱ)可得再與Qn比較.
解答:解:(I)∵
∴xn=x1+(x2-x1)+(x3-x2)++(xn-xn-1
=
==(4分)
當(dāng)n=1時上式也成立,∴(5分)
(Ⅱ)
∵T2n=a1+2a2+3a3++(2n-1)a2n-1+2na2n=

①-②,得(8分)
(10分)
(Ⅲ)由(Ⅱ)可得
當(dāng)n=1時,22n=4,(2n+1)2=9,∴9T2n<Qn;(11分)
當(dāng)n=2時,22n=16,(2n+1)2=25,∴9T2n<Qn;(12分)
當(dāng)n≥3時,22n=[(1+1)n]2=(Cn+Cn1+Cn2++Cnn2>(2n+1)2.∴9T2n>Qn
綜上所述,當(dāng)n=1,2時,9T2n<Qn;當(dāng)n≥3時,9T2n>Qn.(14分)
點評:本題主要考查累加法求數(shù)列通項,錯位相減法求和以及數(shù)列的比較滲透了不等式問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、已知數(shù)列{xn}滿足xn+1=xn-xn-1(n≥2),x1=a,x2=b,Sn=x1+x2+…+xn,則下面正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{xn}滿足x2=
1
2
x1,xn=
1
2
(xn-1+xn-2)(n=3,4,5,…),若
lim
n→∞
xn=2
,則x1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,如果存在非零常數(shù)T,使得an+T=an對于任意的非零自然數(shù)n均成立,那么就稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2),如果x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期為3時,求該數(shù)列前2009項和是
1339+a
1339+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{xn}滿足:x1=1且xn+1=
xn+4
xn+1
,n∈N*

(1)計算x2,x3,x4的值;
(2)試比較xn與2的大小關(guān)系;
(3)設(shè)an=|xn-2|,Sn為數(shù)列{an}前n項和,求證:當(dāng)n≥2時,Sn≤2-
2
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{xn}滿足:x1∈(0,1),xn+1=
xn(
x
2
n
+3)
3
x
2
n
+1
(n∈N*
).
(1)證明:對任意的n∈N*,恒有xn∈(0,1);
(2)對于n∈N*,判斷xn與xn+1的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案