設(shè)f(x)定義在R上的奇函數(shù),f(x)的導(dǎo)函數(shù)為fˊ(x).當(dāng)x>0時(shí),f′(x)>0,又f(-3)=0,則{x|x·f(x)<0}可表述為
A.{x|x∈(-3,0)∪(3,+∞)}
B.{x|x∈(-∞,-3)∪(0,3)}
C.{x|x∈(-∞,-3)∪(3,+∞)}
D.{x|x∈(-3,0)∪(0,3)}
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:重慶市重慶一中2012屆高三9月月考數(shù)學(xué)文科試題 題型:013
設(shè)
f(x)定義在R且x不為零的偶函數(shù),在區(qū)間(-∞,0)上遞增,f(xy)=f(x)+f(y),當(dāng)a滿足f(2a+1)>f(-a+1)-f(3a)-3f(1)則a的取值范圍是C. 且a≠0,-
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)定義在R上,對(duì)任意m、n恒有f(m+n)=f(m)·f(n),且當(dāng)x>0時(shí),0<f(x)<1.
(1)求證: f(0)=1,且當(dāng)x<0時(shí),f(x)>1;
(2)求證:f(x)在R上單調(diào)遞減;
(3)設(shè)集合A={ (x,y)|f(x2)·f(y2)>f(1)},集合B={(x,y)|f(ax-g+2)=1,a∈R},若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com