已知數(shù)列{an}(n∈N+),a1=0,an+1=2an+n×2n(n≥1).
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試用數(shù)學(xué)歸納法證明Sn=2n-1×(n2-3n+4)-2.
【答案】分析:(1)由an+1=2an+n×2n,知an=2an-1+(n-1)×2n-1,an-1=2an-2+(n-2)×2n-2,2an-1=22an-2+(n-2)×2n-1(3分),…,2n-2a2=2n-1a1+1×2n-1,累加得an
(2)n=1時(shí),左邊=右邊,命題成立;設(shè)n=k(k∈N+)時(shí),命題成立,即Sk=2k-1×(k2-3k+4)-2(8分),則Sk+1=Sk+ak+1=2k-1×(k2-3k+4)-2+2k-1×k(k+1)=2k(k2-k+2)-22k×[(k+1)2-3(k+1)+4]-2,從而n=k+1時(shí),命題成立.綜上所述,數(shù)列an的前n項(xiàng)和Sn=2n-1×(n2-3n+4)-2.
解答:解:(1)由an+1=2an+n×2n得an=2an-1+(n-1)×2n-1,
an-1=2an-2+(n-2)×2n-2(1分),
2an-1=22an-2+(n-2)×2n-1(3分),…,2n-2a2=2n-1a1+1×2n-1,
累加得an=[(n-1)+(n-2)+…+1]×2n-1=2n-2×n(n-1)(5分).
(2)n=1時(shí),左邊S1=a1=0,
右邊2n-1×(n2-3n+4)-2=1×(1-3+4)-2=0,
左邊=右邊,命題成立(7分);
設(shè)n=k(k∈N+)時(shí),命題成立,
即Sk=2k-1×(k2-3k+4)-2(8分),
則Sk+1=Sk+ak+1(9分),
=2k-1×(k2-3k+4)-2+2k-1×k(k+1)=2k(k2-k+2)-22k×[(k+1)2-3(k+1)+4]-2,
從而n=k+1時(shí),命題成立(11分).
綜上所述,數(shù)列an的前n項(xiàng)和Sn=2n-1×(n2-3n+4)-2(12分).
點(diǎn)評:第(1)題考查求數(shù)列{an}的通項(xiàng)的方法,解題時(shí)要注意累加法的應(yīng)用;第(2)題考查數(shù)列前n項(xiàng)和的證明,解題時(shí)要注意數(shù)學(xué)歸納法的證明過程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、已知數(shù)列{an}(n≥1)滿足an+2=an+1-an,且a2=1.若數(shù)列的前2011項(xiàng)之和為2012,則前2012項(xiàng)的和等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、已知數(shù)列{an}前n項(xiàng)和為Sn且2an-Sn=2(n∈N*).
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an(n≥1),求{bn}通項(xiàng)公式及前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}(n∈N+)中,a1=1,an+1=
an
2an+1
,則an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項(xiàng)和Sn=n2+2n,設(shè)bn=
1anan+1

(1)試求an
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)一模)定義x1,x2,…,xn的“倒平均數(shù)”為
n
x1+x2+…+xn
(n∈N*).已知數(shù)列{an}前n項(xiàng)的“倒平均數(shù)”為
1
2n+ 4
,記cn=
an
n+1
(n∈N*).
(1)比較cn與cn+1的大。
(2)設(shè)函數(shù)f(x)=-x2+4x,對(1)中的數(shù)列{cn},是否存在實(shí)數(shù)λ,使得當(dāng)x≤λ時(shí),f(x)≤cn對任意n∈N*恒成立?若存在,求出最大的實(shí)數(shù)λ;若不存在,說明理由.
(3)設(shè)數(shù)列{bn}滿足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期為3的周期數(shù)列,設(shè)Tn為{bn}前n項(xiàng)的“倒平均數(shù)”,求
lim
n→∞
Tn

查看答案和解析>>

同步練習(xí)冊答案