若焦點(diǎn)在x軸的圓錐曲線的一條準(zhǔn)線恰好為圓x2+y2+6x-7=0的一條切線,則m的值為   
【答案】分析:先求圓的與坐標(biāo)軸垂直的切線方程,再分類討論圓錐曲線的準(zhǔn)線,從而得解.
解答:解:由題意,圓的標(biāo)準(zhǔn)方程為(x+3)2+y2=16,與坐標(biāo)軸垂直的切線為x=-7或x=1
當(dāng)m∈(0,4)時(shí),圓錐曲線為焦點(diǎn)在x軸上的橢圓,準(zhǔn)線方程為,∴;
當(dāng)m∈(-∞,0)時(shí),圓錐曲線為焦點(diǎn)在x軸上的雙曲線,準(zhǔn)線方程為,∴m=-12
故答案為
點(diǎn)評(píng):本題以圓錐曲線為載體,考查圓與圓錐曲線的綜合,關(guān)鍵是分類討論,求準(zhǔn)線方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1
(1)求橢圓C的方程;
(2)若P為橢圓C的動(dòng)點(diǎn),M為過P且垂直于x軸的直線上的點(diǎn),
OP|OM|
=e
,e為橢圓C的離心率,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動(dòng)點(diǎn),M為過P且垂直于x軸的直線上的點(diǎn),
|OP||OM|
=λ,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x 軸上,它的一個(gè)頂點(diǎn)恰好是拋物線y=
1
8
x2
的焦點(diǎn),離心率等于
5
3

(1)求橢圓C的方程;
(2)過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),是否存在這樣的直線l,使
OA
OB
=0
?若存在,求出直線l的方程,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若焦點(diǎn)在x軸的圓錐曲線
x2
4
+
y2
m
=1
的一條準(zhǔn)線恰好為圓x2+y2+6x-7=0的一條切線,則m的值為
180
49
或-12
180
49
或-12

查看答案和解析>>

同步練習(xí)冊(cè)答案