(本題滿分14分)
設(shè)函數(shù)
(1)求函數(shù)極值;
(2)當(dāng)恒成立,求實(shí)數(shù)a的取值范圍.
(1)f極大=f(—1)=—4. f極小=f(—)=
;(2)a的范圍為
。
【解析】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值以及由函數(shù)恒成立的問題求參數(shù)的取值范圍,求解本題關(guān)鍵是記憶好求導(dǎo)的公式以及極值的定義,對(duì)于函數(shù)的恒成立的問題求參數(shù),要注意正確轉(zhuǎn)化,恰當(dāng)?shù)霓D(zhuǎn)化可以大大降低解題難度.
(Ⅰ)先求出函數(shù)的導(dǎo)數(shù),再令導(dǎo)數(shù)大于0求出單調(diào)增區(qū)間,導(dǎo)數(shù)小于0求出函數(shù)的減區(qū)間,再由極值的定義判斷出極值即可;
(2)設(shè)F(x)=f(x)—g(x)=x3+(2—a)x2+4
利用不等式恒成立構(gòu)造新函數(shù),求解函數(shù)的最值得到結(jié)論。
解:(1)∵f(x)=x3+2x2+x—4
∴=3x2+4x+1,…………………………2分
令=0,得x1= —1,x2=
—
.
x |
(-∞,-1) |
-1 |
(-1,- |
- |
(- |
|
+ |
0 |
— |
0 |
+ |
|
|
極大 |
|
極小 |
|
∴f極大=f(—1)=—4. f極小=f(—)=
…………………………6分
(2)設(shè)F(x)=f(x)—g(x)=x3+(2—a)x2+4
解得a≤5 ∴2<a≤5………10分,當(dāng)x=0時(shí),F(xiàn)(x)=4
∴a的范圍為…………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為
上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙
:
上的任意一點(diǎn),過
作
垂直
軸于
,動(dòng)點(diǎn)
滿足
。
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動(dòng)點(diǎn)
的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根
,請(qǐng)求出一個(gè)長(zhǎng)度為
的區(qū)間
,使
;如果沒有,請(qǐng)說明理由?(注:區(qū)間的長(zhǎng)度為
).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com