分析 要使函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),我們可以轉(zhuǎn)化為f′(x)≤0在區(qū)間(1,+∞)上恒成立的問題來求解,然后利用二次函數(shù)的單調(diào)區(qū)間于對(duì)稱軸的關(guān)系來解答也可達(dá)到目標(biāo).
解答 解:∵f(x)=lnx-a2x2+ax(a∈R),
∴f′(x)=$\frac{1}{x}$-2a2x+a=$\frac{-2{a}^{2}{x}^{2}+ax+1}{x}$,
由f(x)在區(qū)間(1,+∞)上是減函數(shù),可得-2a2x2+ax+1≤0在區(qū)間(1,+∞)上恒成立
①當(dāng)a=0時(shí),1≤0不合題意,
②當(dāng)a≠0時(shí),可得$\left\{\begin{array}{l}{\frac{1}{4a}<1}\\{-2{a}^{2}+a+1≤0}\end{array}\right.$,即$\left\{\begin{array}{l}{a>\frac{1}{4}或a<0}\\{-2{a}^{2}+a+1≤0}\end{array}\right.$,
解得a≤-$\frac{1}{2}$或a≥1,
故a的取值范圍為(-∞,-$\frac{1}{2}$]∪[1,+∞),
故答案為:(-∞,-$\frac{1}{2}$]∪[1,+∞)
點(diǎn)評(píng) 本題以函數(shù)為載體,綜合考查利用函數(shù)的導(dǎo)數(shù)來解決有關(guān)函數(shù)的單調(diào)性,考查已知函數(shù)的單調(diào)性的條件下怎樣求解參數(shù)的范圍問題,考查分類討論,函數(shù)與方程,等數(shù)學(xué)思想與方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | [0,1] | C. | [-1,0) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{5}$ | D. | $\sqrt{21}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 10 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>