已知圓Q(x+2)2+y2=1,P(x、y)為圓上任一點(diǎn),求
y-2
x-1
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:根據(jù)直線和圓的位置關(guān)系即可得到結(jié)論.
解答: 解:設(shè)k=
y-2
x-1
,則y-2=k(x-1),
即kx-y+2-k=0,
當(dāng)直線和圓相切時(shí),
圓心(-2,0)到直線的距離d=
|-2k+2-k|
k2+1
=
|2-3k|
1+k2
=1

平方得8k2-12k+3=0,
解得k=
12±
144-4×8×3
2×8
=
3
4

3-
3
4
≤k≤
3+
3
4
,
y-2
x-1
的取值范圍是[
3-
3
4
3+
3
4
].
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系,利用點(diǎn)到直線的距離等于半徑,求出直線相切時(shí)的條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)(a,b)關(guān)于直線x-y-2=0的對(duì)稱點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合 A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},則集合C中的元素個(gè)數(shù)為( 。
A、3B、11C、8D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知logkx,logmx,lognx滿足關(guān)系式2logmx=logkx+lognx,(x≠1),證明:n2=(kn) logkm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x=-2n-1,n∈N*},B={x|x=-6n+3,n∈N*},設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若{an}的任一項(xiàng)an∈A∩B,且首項(xiàng)a1是A∩B中最大的數(shù),-750<S10<-300.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=|cos
2
|×2 
9-an-13n
2
,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:當(dāng)n≥3時(shí),T2n
2n
2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
≠0,
b
≠0,且|
a
|
=|
b
|
=|
a
-
b
|
,則
a
a
+
b
所在直線的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的前n項(xiàng)和為Sn,若S1,S3,S2成等差數(shù)列,則{an}的公比q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=sin(x+
π
3
)+sinx的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)滿足以下條件:①定義在正實(shí)數(shù)集上;②f(
1
2
)=2;③對(duì)任意實(shí)數(shù)t,都有f(xt)=t•f(x)(x∈R+).
(1)求f(1),f(
1
4
)的值;
(2)求證:對(duì)于任意x,y∈R+,都有f(x•y)=f(x)+f(y);
(3)若不等式f(loga(x-3a)-1)-f(-loga2
x-a
)≥-4對(duì)x∈[a+2,a+
9
4
]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案