分析 由題意可知|PF|=3,求得P點(diǎn)坐標(biāo),$\overrightarrow{PF}$=3$\overrightarrow{FM}$,即可求得M點(diǎn)坐標(biāo),根據(jù)斜率公式求得直線AB的斜率,代入即可求得AB的方程.
解答 解:設(shè)P(x,y),由|PF|=3,得y=2,
∴x=2$\sqrt{2}$,即P(2$\sqrt{2}$,2)
設(shè)M(x0,y0),由 $\overrightarrow{PF}$=3$\overrightarrow{FM}$,得x0=-$\frac{2\sqrt{2}}{3}$,y0=$\frac{2}{3}$,即M(-$\frac{2\sqrt{2}}{3}$,$\frac{2}{3}$)
M為AB的中點(diǎn),kAB=-$\frac{\sqrt{2}}{3}$,
∴AB的方程為:3$\sqrt{2}$x+9y-2=0.
點(diǎn)評(píng) 本題主要考查拋物線的幾何性質(zhì),直線和拋物線的位置關(guān)系,直線方程的求法,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,3} | B. | {4} | C. | {3,5} | D. | {5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 異面或相交 | B. | 相交 | C. | 異面 | D. | 平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16dm2 | B. | 18 dm2 | C. | $18\sqrt{3}$dm2 | D. | $16\sqrt{3}$dm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,$\frac{18}{7}$] | B. | (-1,2] | C. | [2,3) | D. | (-$\frac{6}{7}$,$\frac{18}{7}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{\frac{3}{2},4}]$ | B. | $[{\frac{3}{2},+∞})$ | C. | (1,4] | D. | $[{\frac{5}{4},\frac{5}{3}}]$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com