若關(guān)于x的方程
2x-x2
-mx-2=0
有兩個(gè)不相等的實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-
3
4
)
B.(-∞,-
3
4
)∪(
3
4
,+∞)
C.(
3
4
,1]
D.[-1,-
3
4
)
關(guān)于x的方程
2x-x2
-mx-2=0
有兩個(gè)不相等的實(shí)數(shù)解,
即是y=
2x-x2
,y=mx+2的圖象有兩個(gè)交點(diǎn)
因?yàn)閥=
2x-x2
是以(1,0)為圓心,1為半徑的上半圓,
而y=mx+2是過定點(diǎn)(0,2)的直線,由圖可知,
當(dāng)直線在AB和AC之間時(shí)符合要求,
當(dāng)直線為AB時(shí) m=
2-0
0-2
=-1,
當(dāng)直線為 AC時(shí),有點(diǎn)D到直線AC的距離等于半徑可得m=±
3
4
(正值舍去)
故實(shí)數(shù)m的取值范圍是[-1,-
3
4
),
故選 D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=
1
x
,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的圖象與y=g(x)圖象有且僅有兩個(gè)不同的公共點(diǎn)A(x1,y1),B(x2,y2),則下列判斷正確的是( 。
A.當(dāng)a<0時(shí),x1+x2<0,y1+y2>0
B.當(dāng)a<0時(shí),x1+x2>0,y1+y2<0
C.當(dāng)a>0時(shí),x1+x2<0,y1+y2<0
D.當(dāng)a>0時(shí),x1+x2>0,y1+y2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,1],f(x)=x,那么在區(qū)間[-1,3]內(nèi),關(guān)于x的方程4f(x)=x+m(其中m為實(shí)常數(shù))有四個(gè)不同的實(shí)根,則m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

f(x)是定義在R上的以3為周期的奇函數(shù),f(2)=0,則方程f(x)=0在區(qū)間(0,6)內(nèi)解的個(gè)數(shù)( 。
A.是3個(gè)B.是4個(gè)C.是5個(gè)D.多于5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

關(guān)于x的方程(
3
4
x=3a+2有負(fù)數(shù)根,則實(shí)數(shù)a的取值范圍______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)x0是方程lnx+x=4的解,則x0屬于區(qū)間( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=
log3x,x>0
(
1
3
)x,x≤0
,則滿足方程f(a)=1的所有的a的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時(shí),f(x)=x2-2x.
(1)畫出偶函數(shù)f(x)的圖象;
(2)根據(jù)圖象,寫出f(x)的單調(diào)區(qū)間;同時(shí)寫出函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案