設f(x)=|x-a|,a∈R.
(Ⅰ)當a=5,解不等式f(x)≤3;
(Ⅱ)當a=1,若?x∈R,不等式f(x-1)+f(2x)≥1-2m成立,求m的取值范圍.
分析:(Ⅰ)當a=5,不等式f(x)≤3等價于|x-5|≤3,確定絕對值,可解不等式;
(Ⅱ)?x∈R,不等式f(x-1)+f(2x)≥1-2m成立,等價于左邊的最小值≥1-2m,由此可求m的取值范圍.
解答:解:(Ⅰ)當a=5,不等式f(x)≤3等價于|x-5|≤3,
即-3≤x-5≤3,∴2≤x≤8,
∴不等式的解集為{x|2≤x≤8};
(Ⅱ)當a=1,f(x)=|x-1|,
令g(x)=f(x-1)+f(2x)=|x-2|+|2x-1|=
-3x+3,x≤
1
2
x+1,
1
2
<x<2
3x-3,x≥2
,
∴x=
1
2
時,g(x)取得最小值
3
2

∵?x∈R,不等式f(x-1)+f(2x)≥1-2m成立,
3
2
≥1-2m成立,
∴m≥-
1
4
,
∴m的取值范圍為[-
1
4
,+∞).
點評:本題考查解不等式,考查函數(shù)的最值,考查學生的計算能力,正確求函數(shù)的最值是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=
x
,g(x)=-x+a(a>0)
(1)若F(x)=f(x)+g(x),試求F(x)的單調遞減區(qū)間;
(2)設G(x)=
f(x),f(x)≥g(x)
{g(x),f(x)<g(x)
,試求a的值,使G(x)到直線x+y-1=0距離的最小值為
2

(3)若不等式|
f(x)+a[g(x)-2a]
f(x)
|≤1
對x∈[1,4]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省臺州市臨海市杜橋中學高三(下)3月月考數(shù)學試卷(文科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省重點中學協(xié)作體高三第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省高考數(shù)學試卷(文科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步練習冊答案