【題目】我國南宋時期的數(shù)學家秦九韶在他的著作《數(shù)書九章》中提出了計算多項式f(x)=anxn+an﹣1xn﹣1+…+a1x+a0的值的秦九韶算法,即將f(x)改寫成如下形式:f(x)=(…((anx+an﹣1)x+an﹣2)x+…+a1)x+a0 , 首先計算最內層一次多項式的值,然后由內向外逐層計算一次多項式的值,這種算法至今仍是比較先進的算法,將秦九韶算法用程序框圖表示如圖,則在空白的執(zhí)行框內應填入( 。
A.v=vx+ai
B.v=v(x+ai)
C.v=aix+v
D.v=ai(x+v)
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣a+lnx.
(Ⅰ)若a=1,求證:當x>1時,f(x)>2x﹣1;
(Ⅱ)若存在x0≥e,使f(x0)<2lnx0 , 求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12個不同的根,則實數(shù)t的取值范圍為( 。
A.(﹣ ,﹣2)
B.(﹣∞,﹣2)
C.﹣ <t<﹣2
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點F(1,0),直線l:x=﹣1,直線l'垂直l于點P,線段PF的垂直平分線交l'于點Q.
(1)求點Q的軌跡方程C;
(2)過F做斜率為 的直線交C于A,B,過B作l平行線交C于D,求△ABD外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,側面PAD是邊長為2的正三角形,AB=BD= ,PB=3.
(1)求證:平面PAD⊥平面ABCD;
(2)設Q是棱PC上的點,當PA∥平面BDQ時,求二面角A﹣BD﹣Q的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A,B兩點,當θ變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充要條件
C.命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
D.命題p:x∈R,x2+x-1<0,則﹁p:x∈R,x2+x-1≥0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com