分析 直線l的斜率存在,可設(shè)直線l:y=k(x-3),P(x1,y1),Q(x2,y2),將直線和圓進行聯(lián)立,利用判別式大于0和根與系數(shù)之間的關(guān)系建立條件方程,再由兩直線垂直的條件:斜率之積為-1,化簡整理解方程k的斜率k,即可求出直線方程.
解答 解:由(3,0)代入圓的方程,可得直線x=3與圓無交點,
可設(shè)直線l:y=k(x-3),P(x1,y1),Q(x2,y2),
則由方程組$\left\{\begin{array}{l}{y=k(x-3)}\\{{x}^{2}+{y}^{2}+x-6y+3=0}\end{array}\right.$,
消y得(1+k2)x2-(6k2+6k-1)x+9k2+18k+3=0,
△=(6k2+6k-1)2-4(1+k2)(9k2+18k+3)>0,
由韋達定理得,x1+x2=$\frac{6{k}^{2}+6k-1}{1+{k}^{2}}$,x1x2=$\frac{9{k}^{2}+18k+3}{1+{k}^{2}}$,
y1y2=k2(x1-3)(x2-3)=k2[x1x2+9-3(x1+x2)]
=k2($\frac{9{k}^{2}+18k+3}{1+{k}^{2}}$+9-3•$\frac{6{k}^{2}+6k-1}{1+{k}^{2}}$)=$\frac{15{k}^{2}}{1+{k}^{2}}$,
∵OP⊥OQ,
∴kOP•kOQ=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-1,
故x1x2+y1y2=0,
從而可得$\frac{9{k}^{2}+18k+3}{1+{k}^{2}}$+$\frac{15{k}^{2}}{1+{k}^{2}}$=0,
解得k=-$\frac{1}{2}$或-$\frac{1}{4}$,代入判別式均大于0成立,
則直線l的方程為x+2y-3=0或x+4y-3=0.
點評 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,聯(lián)立方程組利用根與系數(shù)之間的關(guān)系建立條件,考查兩直線垂直的條件:斜率之積為-1,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ③④ | C. | ①② | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4033 | B. | -4033 | C. | 8066 | D. | -8066 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,+∞) | B. | (1,+∞) | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 60° | B. | 45° | C. | 30° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 1 | 2 | 3 |
p | $\frac{1}{3}$ | a | $\frac{1}{6}$ |
A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $2a+\frac{5}{6}$ | D. | $\frac{11}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com