不等式4x-20×2x+64<0解集是   
【答案】分析:令 2x =t,t>0,則有 t2-20t+64<0,解此一元二次不等式求的4<t<16,即 4<2x<16,由此求得不等式的解集.
解答:解:令 2x =t,t>0,不等式4x-20×2x+64<0 即 t2-20t+64<0.
解得 4<t<16,即 4<2x<16,
∴2<x<4,
故答案為 (2,4).
點(diǎn)評:本題主要考查指數(shù)不等式和一元二次不等式的解法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中:
(1)若“p且q”為假命題,則p,q均為假命題;
(2)(1+
3x
)6(1+
1
4x
)10
展開式中的常數(shù)項(xiàng)為4246;
(3)如果不等式
4x-x2
>(a-1)x的解集為A,且A⊆{x|0<x<2},那么實(shí)數(shù)a的取值范圍是a∈(2,+∞).
(4)函數(shù)f(x)=
1
3
x3+
1
2
ax2+
a2-8
4
x
在x=1處的切線恰好在此處穿過函數(shù)圖象的充要條件是a=-2
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)證明下列命題:
已知函數(shù)f(x)=kx+p及實(shí)數(shù)m,n(m<n),若f(m)>0,f(n)>0,則對于一切實(shí)數(shù)x∈(m,n)都有f(x)>0.
(2)利用(1)的結(jié)論解決下列各問題:
①若對于-6≤x≤4,不等式2x+20>k2x+16k恒成立,求實(shí)數(shù)k的取值范圍.
②a,b,c∈R,且|a|<1,|b|<1,|c|<1,求證:ab+bc+ca>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)不等式4x-20×2x+64<0解集是
(2,4)
(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式(ax-20)lg
2ax
≤0
對任意的正實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案