11.已知an=n,bn=n+1,則數(shù)列$\left\{{\frac{1}{{{a_n}{b_n}}}}\right\}$的前n項(xiàng)和為Sn=$\frac{n}{n+1}$.

分析 由:$\frac{1}{{a}_{n}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,采用“裂項(xiàng)法”即可求得數(shù)列$\left\{{\frac{1}{{{a_n}{b_n}}}}\right\}$的前n項(xiàng)和為Sn

解答 解:由:$\frac{1}{{a}_{n}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
數(shù)列$\left\{{\frac{1}{{{a_n}{b_n}}}}\right\}$的前n項(xiàng)和為Sn=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{n(n+1)}$,
=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$,
=1-$\frac{1}{n+1}$,
=$\frac{n}{n+1}$,
數(shù)列$\left\{{\frac{1}{{{a_n}{b_n}}}}\right\}$的前n項(xiàng)和為Sn=$\frac{n}{n+1}$,
故答案為:$\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查數(shù)列前n項(xiàng)和的求法,考查“裂項(xiàng)法”求數(shù)列前n項(xiàng)和的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.曲線(xiàn)M的方程為$\sqrt{{{(x-1)}^2}+{y^2}}+\sqrt{{{(x+1)}^2}+{y^2}}$=4,直線(xiàn)y=k(x+1)交曲線(xiàn)M于A(yíng),B兩點(diǎn),點(diǎn)C(1,0),則△ABC的周長(zhǎng)為(  )
A.4B.$4\sqrt{2}$C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知空間四邊形ABCD中,對(duì)角線(xiàn)AC=$2\sqrt{3}$,BD=2,E、F分別是AB、CD的中點(diǎn),EF=2,求異面直線(xiàn)AC與EF所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若方程mx2+(3-m)y2=1表示雙曲線(xiàn),則實(shí)數(shù)m的取值范圍是( 。
A.m<0B.m>3C.0<m<3D.m<0或m>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.拋物線(xiàn)x2=-8y的通徑為線(xiàn)段AB,O為拋物線(xiàn)的頂點(diǎn),則通徑長(zhǎng)和△AOB的面積分別是( 。
A.4,4B.4,2C.8,8D.8,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若直線(xiàn)$x+\sqrt{3}y=a$與圓x2+y2=1在第一象限有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是($\sqrt{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),f(x)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),且(x-1)f'(x)<0,若x1<x2,且x1+x2>2,則f(x1)與f(x2)的大小關(guān)系是(  )
A.f(x1)>f(x2B.f(x1)<f(x2C.f(x1)=f(x2D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{x{+∫}_{0}^{a}3{t}^{2}dt,x≤0}\end{array}\right.$,若f(f(1))≥1,則實(shí)數(shù)a的范圍是( 。
A.a≤-1B.a≥-1C.a≤1D.a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)一直線(xiàn)l經(jīng)過(guò)點(diǎn)(-1,1),此直線(xiàn)被兩平行直線(xiàn)l1:x+2y-1=0和l2:x+2y-3=0所截得線(xiàn)段的中點(diǎn)在直線(xiàn)x-y-1=0上,求直線(xiàn) l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案