【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點(diǎn).若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是 .
【答案】(0,2)
【解析】解:∵函數(shù)f(x)=x2﹣mx﹣1是區(qū)間[﹣1,1]上的平均值函數(shù),
∴關(guān)于x的方程x2﹣mx﹣1= 在(﹣1,1)內(nèi)有實(shí)數(shù)根.
即x2﹣mx﹣1=﹣m在(﹣1,1)內(nèi)有實(shí)數(shù)根.
即x2﹣mx+m﹣1=0,解得x=m﹣1,x=1.
又1(﹣1,1)
∴x=m﹣1必為均值點(diǎn),
即﹣1<m﹣1<10<m<2.
∴所求實(shí)數(shù)m的取值范圍是(0,2).
故答案為:(0,2)
函數(shù)f(x)=x2﹣mx﹣1是區(qū)間[﹣1,1]上的平均值函數(shù),故有x2﹣mx﹣1= 在(﹣1,1)內(nèi)有實(shí)數(shù)根,求出方程的根,讓其在(﹣1,1)內(nèi),即可求出實(shí)數(shù)m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖正方形的邊長(zhǎng)為,已知,將沿邊折起,折起后點(diǎn)在平面上的射影為點(diǎn),則翻折后的幾何體中有如下描述:
①與所成角的正切值是;
②∥;
③的體積是;
④平面⊥平面;
⑤直線與平面所成角為.
其中正確的有 .(填寫你認(rèn)為正確的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB是☉O的直徑,點(diǎn)C是☉O上的動(dòng)點(diǎn)(點(diǎn)C不與A,B重合),過(guò)動(dòng)點(diǎn)C的直線VC垂直于☉O所在的平面,D,E分別是VA,VC的中點(diǎn),則下列結(jié)論中正確的是________(填寫正確結(jié)論的序號(hào)).
(1)直線DE∥平面ABC.
(2)直線DE⊥平面VBC.
(3)DE⊥VB.
(4)DE⊥AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足f(x﹣1)的對(duì)稱軸為x=1,f(x+1)= (f(x)≠0),且在區(qū)間(1,2)上單調(diào)遞減,已知α、β是鈍角三角形中兩銳角,則f(sinα)和f(cosβ)的大小關(guān)系是( )
A.f(sinα)>f(cosβ)
B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)
D.以上情況均有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=ex(x﹣aex) 恰有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是甲、乙兩人在一次射擊比賽中中靶的情況(擊中靶中心的圓面為10環(huán),靶中各數(shù)字表示該數(shù)字所在圓環(huán)被擊中所得的環(huán)數(shù)),每人射擊了6次.
甲射擊的靶 乙射擊的靶
(1)請(qǐng)用列表法將甲、乙兩人的射擊成績(jī)統(tǒng)計(jì)出來(lái);
(2)請(qǐng)你用學(xué)過(guò)的統(tǒng)計(jì)知識(shí),對(duì)甲、乙兩人這次的射擊情況進(jìn)行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(-,0),B(0,-),其中k≠0且k≠±1,直線l經(jīng)過(guò)點(diǎn)P(1,0)和AB的中點(diǎn).
(1)求證:A,B關(guān)于直線l對(duì)稱.
(2)當(dāng)1<k<時(shí),求直線l在y軸上的截距b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過(guò)尾/立方米時(shí), 的值為千克/年;當(dāng)時(shí), 是的一次函數(shù),且當(dāng)時(shí), .
()當(dāng)時(shí),求關(guān)于的函數(shù)的表達(dá)式.
()當(dāng)養(yǎng)殖密度為多大時(shí),每立方米的魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù) 的單調(diào)遞減區(qū)間是( )
A.(﹣∞,﹣2)
B.(﹣∞,1)
C.(﹣2,4)
D.(1,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com