已知直線l:kx-y+1+2k=0,求原點(diǎn)O到直線l距離的最大值.
考點(diǎn):恒過定點(diǎn)的直線,點(diǎn)到直線的距離公式
專題:轉(zhuǎn)化思想,直線與圓
分析:寫出原點(diǎn)的坐標(biāo),由題意可知原點(diǎn)到已知直線的距離的最大值即為原點(diǎn)到直線恒過的定點(diǎn)間的距離,所以利用兩點(diǎn)間的距離公式求出原點(diǎn)到定點(diǎn)間的距離即為距離的最大值.
解答: 解:直線l:kx-y+1+2k=0,恒過定點(diǎn)(-2,1),
原點(diǎn)(0,0)到直線距離的最大值,即為原點(diǎn)(0,0)到點(diǎn)(-2,1)的距離d.
d=
(-2)2+12
=
5

原點(diǎn)O到直線l距離的最大值:
5
點(diǎn)評:此題考查學(xué)生會根據(jù)兩直線的方程求出兩直線的交點(diǎn)坐標(biāo),靈活運(yùn)用兩點(diǎn)間的距離公式化簡求值,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某超市貨架上擺放著某品牌紅燒牛肉方便面,如圖是它們的三視圖,則貨架上的紅燒牛肉方便面至少有( 。
A、8桶B、9桶
C、10桶D、11桶

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊過點(diǎn)A(-2,4),求下列各式的值.
(1)2sin2α-sinαcosα-cos2α;
(2)tan2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓心在直線2x-y-3=0上,且過點(diǎn)A(5,2)和點(diǎn)B(3,2)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的㈱對邊分別為a,b,c,且滿足2acosC=2b+c.
(1)求角A;
(2)若sinBsinC=
1
4
,且b=4,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的非負(fù)半軸重合,且長度單位相同,若圓C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為
x=3+t
y=4+2t
(t為參數(shù)),直線l與圓C交于A,B兩點(diǎn).
(1)求圓C的直角坐標(biāo)方程與直線l的普通方程;
(2)求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=log
1
2
3-2x-x2
的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x+a).
(1)若0<f(1-2x)-f(x)<
1
2
,當(dāng)a=1時(shí),求x的取值范圍;
(2)若定義在R上奇函數(shù)g(x)滿足g(x+2)=-g(x),且當(dāng)0≤x≤1時(shí),g(x)=f(x),求g(x)在[-3,-1]上的反函數(shù)h(x);
(3)對于(2)中的g(x),若關(guān)于x的不等式g(
t-2 x
8+2 x+3
)≥1-log23在R上恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的中心在坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸,且拋物線x2=-4
2
y的焦點(diǎn)是它的一個(gè)焦點(diǎn),又點(diǎn)A(1,
2
)在該橢圓上.
(1)求橢圓E的方程;
(2)若斜率為
2
直線l與橢圓E交于不同的兩點(diǎn)B、C,當(dāng)△ABC的面積為
2
時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案