精英家教網(wǎng)如圖,在三棱柱△ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BC=1,BB1=2,∠BCC1=
π
3

(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)試在棱CC1(不包含端點C,C1上確定一點E的位置,使得EA⊥EB1(要求說明理由).
(Ⅲ)在(Ⅱ)的條件下,若AB=
2
,求二面角A-EB1-A1的平面角的正切值.
分析:(I)根據(jù)本題條件可得BC1⊥AB,再解三角形的有關知識可得C1B⊥BC,進而根據(jù)線面垂直的判定定理可得答案.
(II)根據(jù)題意設出點的坐標,再求出兩條直線所在的向量,然后利用向量的數(shù)量積等于0可得答案.
(III)分別求出兩個平面的法向量,再利用向量的有關運算求出兩個向量的夾角,進而轉(zhuǎn)化為二面角的平面角.
解答:解:(Ⅰ)證明:因為AB⊥側(cè)面BB1C1C,所以AB⊥BC1
在△BCC1中有BC=1,BB1=2,∠BCC1=
π
3

所以由余弦定理可得:BC1=
1+4-2×2×cos
π
3
=
3

故有 BC2+C1B2=C1C2,
所以C1B⊥BC.
又因為BC∩AB=B,且AB,BC?平面ABC,
所以C1B⊥平面ABC.
(II)以BA為z軸,BC為x軸,BC′為y軸,建立空間直角坐標系,所以B(0,0,0),C(1,0,0),C′(0,
3
,0)
,B′(-1,
3
,0)

設E(x,y,0),A(0,0,m),所以
CC′
=(-1,
3
,0)
,
CE
=(x-1,y,0)
,
CE
CC′

E(1-λ,
3
λ,0)
(0<λ<1)
AE
=(1-λ,
3
λ,-m)
,
B′E
=(2-λ,
3
(1-λ),0)

AE
B′E
=4λ2-6λ+2=0
?λ=1(舍)或λ=
1
2

故E為CC′中點.
(III)由題設得,A(0,0,
2
),A′(-1,
3
,
2
)
E(
1
2
,
3
2
,0)

所以
AE
=(
1
2
,
3
2
,-
2
)
,
B′E
=(
3
2
,-
3
2
,0)

設平面AEB′的一個法向量為
n1
=(x,y,z)
,平面A′B′E的一個法向量為
n2

所以
AE
n1
=
1
2
x+
3
2
y-
2
z=0
B′E
n1
=
3
2
x-
3
2
y=0

令x=1,故
n1
=(1,
3
,
2
)
,同理
n2
=(1,
3
,0)

所以cos<
n1
,
n2
>=
n1
n2
|
n1
|•|
n2
|
=
1+3
6
×2
=
6
3

cosθ=
6
3
,sinθ=
3
3

tanθ=
2
2
,即二面角A-EB1-A1的平面角的正切值為
2
2
點評:本題考查線面垂直、線線垂直、二面角的求法,是立體幾何?嫉膯栴},解決此類問題的關鍵是熟練掌握幾何體的結(jié)構(gòu)特征進而建立空間直角坐標系,利用空間向量的有關運算解決空間角、空間距離、線面的位置關系等問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求證:C1B⊥平面ABC;
(2)試在棱CC1(不包含端點C,C1)上確定一點E的位置,使得EA⊥EB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•長春一模)如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O為AC中點.
(1)證明:A1O⊥平面ABC;
(2)若E是線段A1B上一點,且滿足VE-BCC1=
112
VABC-A1B1C1
,求A1E的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點,AA1=AB=2,四棱錐B-AA1C1D的體積為3.
(1)求證:AB1∥平面BC1D;
(2)求二面角C-BC1-D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•四川)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分別是線段BC,B1C1的中點,P是線段AD的中點.
(I)在平面ABC內(nèi),試做出過點P與平面A1BC平行的直線l,說明理由,并證明直線l⊥平面ADD1A1;
(II)設(I)中的直線l交AB于點M,交AC于點N,求二面角A-A1M-N的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A,ACC1A1均為正方形,∠BAC=90°,AB=2,點D1是棱B1C1的中點.
(I)求證:A1D1⊥平面BB1C1C;
(II)求三棱錐C1-A1D1C與多面體A1B1D1CAB的體積的比值.

查看答案和解析>>

同步練習冊答案